Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.673-678
© 2017 The Japan Institute of Metals and Materials

Fabrication of Vapor-Grown Carbon Fiber-Reinforced Magnesium-Calcium Alloy Composites by Compo-Casting Process

Youqiang Yao1, Zhefeng Xu1, Kenjiro Sugio1, Yongbum Choi1, Kazuhiro Matsugi1, Shaoming Kang1, Ruidong Fu2 and Gen Sasaki1

1Department of Mechanical Materials Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China

Magnesium-calcium alloy composites reinforced with nickel-coated vapor-grown carbon fibers (VGCFs) were fabricated using a compo-casting process. Then, the microstructures and mechanical properties of these composites were investigated. The Mg-5Al-3Ca (AX53) alloy exhibited a dendritic microstructure with a coarse lamellar (Mg, Al)2Ca phase along the grain boundaries instead of the irregular β-Mg17Al12 phase found in the Mg-5Al alloy. For the 0.5% Ni-coated VGCF-reinforced AX53 alloy composite, the VGCFs were well dispersed in the matrix, with the nickel coating diffused into the metal. Al3Ni compounds formed both inside the grains and on the grain boundaries. The ultimate tensile strength (UTS) and strain-hardening of the AX53 alloy, in comparison with the Mg-5Al alloy, were improved significantly to the point of fracture. Furthermore, an increase in the UTS of the composite was achieved with the addition of 0.5% VGCFs, along with an increase in the total elongation, which could mainly be attributed to the strain hardening during a larger strain. The 0.2% yield stress was slightly improved as a result of the small amount of introduced Ni-coated VGCFs. However, the elongation dropped for the 1.0% VGCF-reinforced AX53 alloy composites, which led to a low strength similar with that of the AX53 alloy.


(Received 2016/11/17; Accepted 2017/01/23; Published 2017/03/25)

Keywords: mechanical properties, vapor-grown carbon fiber (VGCF), magnesium matrix composites, nickel coating

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Show Denko Co., Ltd., Material Safety Data Sheet, (2007) p. 1.
  2. M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, K. Miyashita and M.S. Dresselhaus: Carbon 39 (2001) 1287-1297.
  3. L. Wang, H. Choi, J.M. Myoung and W. Lee: Carbon 47 (2009) 3427-3433.
  4. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher and S. Lanka: Composites Part A 42 (2011) 234-243.
  5. G. Sasaki, F. Kondo, K. Matsugi and O. Yanagisawa: Trans Tech Publications. 561 (2007) 729-732.
  6. Z.F. Xu, Y.B. Choi, K. Matsugi, D.C. Li and G. Sasaki: Mater. Trans. 50 (2009) 2160-2164.
  7. J.M. Ting and M.L. Lake: J. Mater. Res. 10 (1995) 247-250.
  8. K. Fukuchi, K. Sasaki, K. Katagiri, T. Imanishi and A. Kakitsuji: Procedia Eng. 10 (2011) 912-917.
  9. R. Ninomiya, T. Ojiro and K. Kubota: Acta Metall. Mater. 43 (1995) 669-674.
  10. A.A. Luo, M.P. Balogh and B.R. Powell: Metall. Mater. Trans., A 33 (2002) 567-574.
  11. A. Suzuki, N.D. Saddock, J.W. Jones and T.M. Pollock: Scr. Mater. 51 (2004) 1005-1010.
  12. L. Han, H. Hu and D.O. Northwood: Mater. Lett. 62 (2008) 381-384.
  13. S. Naher, D. Brabazon and L. Looney: J. Mater. Process. Technol. 143-144 (2003) 567-571.
  14. M.C. Flemings: Metall. Trans. 22 (1991) 957-981.
  15. S. Naher, D. Brabazon and L. Looney: J. Mater. Process. Technol. 166 (2005) 430-439.
  16. Z. Fan: Int. Mater. Rev. 47 (2002) 49-85.
  17. F. Delannay, L. Froyen and A. Deruyttere: J. Mater. Sci. 22 (1987) 1-16.
  18. H. Chen and A.T. Alpas: Wear 192 (1996) 186-198.
  19. T. Rajan, R. Pillai and B. Pai: J. Mater. Sci. 33 (1998) 3491-3503.
  20. Y.M. Ryu, E.P. Yoon and M.H. Rhee: J. Mater. Sci. Lett. 19 (2000) 1103-1105.
  21. J. Rams, A. Urena and M.D. Escalera: Compos. 38 (2007) 566-575.
  22. Y. Yao, Z. Xu, K. Sugio, Y. Choi, S. Kang, R. Fu and G. Sasaki: Mater. Trans. 56 (2015) 1693-1697.
  23. A. Suzuki, N.D. Saddock, J.W. Jones and T.M. Pollock: Acta Mater. 53 (2005) 2823-2834.
  24. H. Wang, L. Liu and F. Liu: Mater. Des. 50 (2013) 463-466.
  25. Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda: Mater. Sci. Eng. A 354 (2003) 298-305.
  26. H. Chen and A.T. Alpas: Wear 192 (1996) 186-198.
  27. W. Qudong, C. Wenzhou, Z. Xiaoqin, L. Yizhen, D. Wenjiang and M. Mabuchi: J. Mater. Sci. 36 (2001) 3035-3040.
  28. S.W. Xu, N. Matsumoto, K. Yamamoto, S. Kamado, T. Honma and Y. Kojima: Mater. Sci. Eng. A 509 (2009) 105-110.
  29. M. Masoumi and H. Hu: Mater. Sci. Eng. A 528 (2011) 3589-3593.
  30. L. Zhang, K.K. Deng, K.B. Nie, F.J. Xu, K. Su and W. Liang: Mater. Sci. Eng. A 636 (2015) 279-288.
  31. H. Watanabe, M. Yamaguchi, Y. Takigawa and K. Higashi: Mater. Sci. Eng. A 454-455 (2007) 384-388.
  32. J.L. Tsai and T.C. Lu: Compos. Struct. 90 (2009) 172-179.
  33. W.S. Miller and F.J. Humphreys: Scr. Metall. Mater. 25 (1991) 33-38.


© 2017 The Japan Institute of Metals and Materials
Comments to us :