Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.668-672
© 2017 The Japan Institute of Metals and Materials

Influence of Structure on Thermal Conductivity of Insulation Board Used during Ingot Casting

Chaojie Zhang1, Yanping Bao1, Min Wang1, Lechen Zhang1 and Hanghang An1

1State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

In order to improve heat prevention property of insulation board used in hot top during casting of steel ingot, thermal conductivities of insulation boards of solid structure and porous structure with different porosities were investigated using numerical simulation and calorimetric techniques. A heat transfer model used to calculate the thermal conductivity of insulation boards was developed, and the accuracy of the model was verified by calorimetric experiment. A series of porous insulation boards made of floating beads with different porosities were designed and effect of porosity on thermal conductivity of porous insulation board was investigated by numerical simulation. It was found that porous insulation board performs a better heat prevention property than insulation board of solid structure. Thermal conductivity of porous insulation board decreases notably with the increase of porosity. By contrast, the sizes of pores almost have no influence on the thermal conductivity of porous insulation board.


(Received 2016/10/19; Accepted 2017/01/12; Published 2017/03/25)

Keywords: insulation board, porous material, thermal conductivity, floating bead

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. F. Cernuschi, S. Ahmaniemi, P. Vuoristo and T. Mäntylä: J. Eur. Cera. Soc. 24 (2004) 2657-2667.
  2. W.N. dos Santos and R. Taylor: High Temp. - High Pressures 25 (1993) 89-98.
  3. Z. Živcová, E. Gregorová, W. Pabst, D.S. Smith, A. Michot and C. Poulier: J. Eur. Cera. Soc. 29 (2009) 347-353.
  4. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi and D.S. Smith: J. Eur. Cera. Soc. 26 (2006) 3567-3574.
  5. J. Bourret, N. Tessier-Doyen, B. Naït-Ali, F. Pennec, A. Alzina, C.S. Peyratout and D.S. Smith: J. Eur. Cera. Soc. 33 (2013) 1487-1495.
  6. W.N. dos Santos: J. Eur. Cera. Soc. 23 (2003) 745-755.
  7. R. Barea, M.I. Osendi, J.M.F. Ferreira and P. Miranzo: Acta Mater. 53 (2005) 3313-3318.
  8. I.G. Duderov and D.N. Poluboyarinov: Refractories 4 (1963) 558-565.
  9. Refractory materials-Determination of thermal conductivity(calorimeter), YB/T 4130-2005 (Chinese standard)[S].
  10. I. Jung, S.A. Decterov and A.D. Pelton: J. Phase Equilibria Diffus. 25 (2004) 329-345.
  11. G. Eriksson and A.D. Pelton: Metallurgical Transactions B 24 (1993) 807-816.
  12. W. Schulle and E. Schlegel: Ceramic Monographs—Handbook of Ceramics, Supplement to Interceram, 40 (1991).
  13. A.L. Loeb: J. Am. Ceram. Soc. 37 (1954) 96-99.
  14. D.S. Smith, A. Alzina, J. Bourret, B. Nait-Ali, F. Pennec, N. Tessier-Doyen, K. Otsu, H. Matsubara, P. Elser and U.T. Gonzenbach: J. Mater. Res. 28 (2013) 2260-2272.
  15. J.C. Maxwell. A treatise on electricity and magnetism[M]. Oxford: Clarendon press, 1881.
  16. R. Landauer: J. Appl. Phys. 23 (1952) 779-784.
  17. Z. Hashin and S. Shtrikman: J. Appl. Phys. 33 (1962) 3125-3131.
  18. H.W. Russell: J. Am. Ceram. Soc. 18 (1935) 1-5.
  19. R. Kumar and B. Bhattacharjee: Cement Concr. Res. 33 (2003) 155-164.


© 2017 The Japan Institute of Metals and Materials
Comments to us :