Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.635-640
© 2017 Japan Foundry Engineering Society

Effect of Coat Permeability on Mold Filling in Expendable Pattern Casting Process of Thin Wall Aluminum Alloy Casting

Sadatoshi Koroyasu1

1Department of Mechanical and Precision Systems, School of Science and Engineering, Teikyo University, Utsunomiya 320-8551 Japan

The effect of coat permeability on mold filling for thin wall aluminum alloy castings in the expendable pattern casting (EPC) process was investigated experimentally. Thin wall aluminum alloy plates were cast by the EPC process, using eight kinds of coats with different permeabilities. The fluidity length and melt velocity were measured. The use of thin expendable polystyrene (EPS) pattern led to shorter fluidity length of melt. When the coat permeability was less than approximately 2, the fluidity length of the melt and melt velocity increased with increasing coat permeability. When the coat permeability was greater than approximately 2, even when the coat permeability increased, the fluidity length of the melt and melt velocity did not increase so much. The application of high expansion ratio of EPS pattern or high pouring temperature, led to long fluidity length of the melt. The distances of melt flow stop were predicted based on the heat transfer from the molten metal to the mold through the coat using measurement melt velocity values. The predicted values more or less agreed with experimental values for fluidity length.

This Paper was Originally Published in Japanese in J. JFS 88 (2016) 192-197.


(Received 2016/10/26; Accepted 2017/01/06; Published 2017/03/25)

Keywords: expendable pattern casting process, aluminum alloy, thin wall casting, fluidity length, coat permeability

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. A.T. Speda: Mod. Cast. (2001) 29.
  2. General Motors Asia Pacific Japan: SOKEIZAI (1994) 5.
  3. F. Sonnenberg: LOST FOAM casting made simple (American Foundry Society, Schaumburg) (2008).
  4. S. Koroyasu and A. Ikenaga: Mater. Trans. 53 (2012) 224-228.
  5. S. Koroyasu and M. Matsuda: J. JFS 76 (2004) 687-694.
  6. S. Koroyasu: J. JFS 81 (2009) 377-383.
  7. J. Zhu, I. Ohnaka, T. Ohmichi, K. Mineshita and Y. Yoshioka: J. JFS 72 (2000) 715-719.
  8. I Ohnaka, T. Ohmichi, J. Zhu, Y. Hagino, B. Yamamoto and K. Shinano: Report of JFS Meeting 138 (2000) 101.
  9. T. Nakamura, M. Tamaoki and T. Maruyama: Report of JFS Meeting 164 (2014) 92-92.
  10. T. Maruyama, K. Katsuki and T. Kobayashi: J. JFS 78 (2006) 53-58.
  11. M.R. Barone and D.A. Caulk: Int. J. Heat Mass Transfer (2005) 4132-4149.
  12. S. Koroyasu: J. JFS 88 (2016) 192-197.
  13. K. Kubo and H. Asao: Report of JFS Meeting 146 (2005) 23.
  14. Y. Hotta, H. Yamagata, M. Nikawa, I. Ohnaka, Y. Tate and Y. Mizutani: Report of JFS Meeting 162 (2013) 82.
  15. F. Kinoshita: J. JFS 86 (2014) 927-930.
  16. Y. Sakaguchi and T. Yamada: J. JFS 75 (2003) 355-361.
  17. EPC Process Technical Meeting: Characteristic and Standardization of Coat for EPC Process (Kansai Branch of JFS) (1996) 18.
  18. I. Ohnaka: Computer Den-netsu Gyoukokaiseki Nyumon, (Maruzen, Tokyo) (1990) p.202.
  19. S. Kashiwai, J.D. Zhu and I. Ohnaka: J. JFS 73 (2001) 592-597.
  20. Japan Foundry Engineering Society: Tyuzoukougaku Binran, (Maruzen, Tokyo) (2002) p. 450.
  21. S. Koroyasu and M. Matsuda: J. JFS 68 (1996) 949-955.
  22. I. Ohnaka: Computer Den-netsu Gyoukokaiseki Nyumon, (Maruzen, Tokyo) (1990) p.326.
  23. W. Nakajima: Saishin Den-netu Keisoku Gizyutsu, (1992) pp.259-262.


© 2017 Japan Foundry Engineering Society
Comments to us :