Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.592-595
© 2017 The Japan Institute of Metals and Materials

Atmosphere Gas Carburizing for Improved Wear Resistance of Pure Titanium Fabricated by Additive Manufacturing

Hyo Kyu Kim1, 2, Hyung Guin Kim1, Byung-Soo Lee1, Seok-Hong Min2, Tae Kwon Ha2, Kyung-Hwan Jung3, Chang-Woo Lee1 and Hyung-Ki Park1

1Gangwon Regional Division, Korea Institute of Industrial Technology, Gangneung 25440, Republic of Korea
2Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
3KIMM Metal 3D Printing Convergence Research Team, Daejeon 34103, Republic of Korea

In order to improve wear resistance of pure titanium fabricated by additive manufacturing, its surface was hardened by atmosphere gas carburizing. For the study, the pure titanium was fabricated by electron beam melting system. The microstructures and wear properties of the as-built and carburized titanium were investigated. After carburizing, hardness was increased and titanium carbides were precipitated in the surface region. The friction coefficients of the both specimens were estimated by dry sliding friction tests; the friction coefficient of carburized titanium is lower than that of as-built titanium. The improvement of wear property would be a result of high surface hardness and the slippery nature of titanium carbide formed on the surface.


(Received 2016/10/13; Accepted 2017/01/19; Published 2017/03/25)

Keywords: pure titanium, additive manufacturing, electron beam melting, gas carburizing, wear resistance

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. B. Baufeld, O.V.d. Biest and R. Gault: Mater. Des. 31 (2010) S106-S111.
  2. W.E. Frazier: J. Mater. Eng. Perform. 23 (2014) 1917-1928.
  3. M. Vaezi, H. Seitz and S. Yang: Int. J. Adv. Manuf. Technol. 67 (2013) 1721-1754.
  4. R.R. Boyer: Mater. Sci. Eng. A 213 (1996) 103-114.
  5. E.P. Lautenschlager and P. Monaghan: Int. Dent. J. 43 (1993) 245-253.
  6. D.S.R. Krishna, Y.L. Brama and Y. Sun: Tribol. Int. 40 (2007) 329-334.
  7. S. Sun, M. Brandt and M.S. Dargusch: Int. J. Mach. Tools Manuf. 49 (2009) 561-568.
  8. K. Osakada and M. Shiomi: Int. J. Mach. Tools Manuf. 46 (2006) 1188-1193.
  9. K. Yamanaka, W. Saito, M. Mori, H. Matsumoto and A. Chiba: Add. Manuf. 8 (2015) 105-109.
  10. N. Tsuji, S. Tanaka and T. Takasugi: Surf. Coat. Tech. 203 (2009) 1400-1405.
  11. A. Zhecheva, W. Sha, S. Malinov and A. Long: Surf. Coat. Tech. 200 (2005) 2192-2207.
  12. T.S. Kim, Y.G. Park and M.Y. Wey: Mater. Sci. Eng. A A361 (2003) 275-280.
  13. H. Dong and T. Bell: Wear 238 (2000) 131-137.
  14. R. Bailey and Y. Sun: Surf. Coat. Tech. 261 (2015) 28-34.
  15. T.M. Caroline, J.C. Brachet and J. Gilles: J. Nucl. Mater. 305 (2002) 224-231.
  16. S.H. Sun, Y. Koizumi, S. Kurosu, Y.P. Li and A. Chiba: Acta Mater. 86 (2015) 305-318.
  17. N. Poondla, T.S. Srivatsan, A. Patnaik and M. Petraroli: J. Alloy. Compd. 486 (2009) 162-167.
  18. P. Mercelis and J.P. Kruth: Rapid Prototyping J. 12 (2006) 254-265.
  19. S. Li, B. Sun, H. Imai, T. Mimoto and K. Kondoh: Appl. Sci. & Manuf. 48 (2013) 57-66.
  20. H.A. Rastegari, S. Asgari and S.M. Abbasi: Mater. Des. 32 (2011) 5010-5014.


© 2017 The Japan Institute of Metals and Materials
Comments to us :