Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.580-586
© 2017 The Japan Institute of Metals and Materials

Ion-Irradiation Effect on Strain Rate Sensitivity of Nanoindentation Hardness of W Single Crystal

Eva Hasenhuetl1, Ryuta Kasada2, Zhexian Zhang2, Kiyohiro Yabuuchi2 and Akihiko Kimura2

1Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
2Institute of Advanced Energy (IAE), Kyoto University, Uji 611-0011, Japan

The local strain rate (LSR) dependence of nanoindentation (NI) hardness was investigated by using standard constant strain rate (CSR) test method and strain rate jump (SRJ) test method for W single crystal with the surface orientation of {001} before and after 6.4 MeV Fe3+ irradiations (nominal damage level of 0.1, 1 and 2 dpa, 573 K). The effect of ion-irradiation on the LSR sensitivity of NI-hardness at room temperature (RT) was evaluated by changing LSR between 0.3 s−1 and 0.01 s−1 or 0.03 s−1 and 0.001 s−1. Under these experimental conditions, ion-irradiation increases NI-hardness and slightly decreases LSR sensitivity of NI-hardness for all damage levels. The effect is more pronounced with increasing damage level. The LSR sensitivity values are ranging between 0.015 and 0.04 in SRJ tests, and between 0.0425 and 0.06 in CSR tests, indicating that the deformation of bcc W{001} at RT is controlled by a high lattice friction stress. The decrease in LSR sensitivity by ion-irradiation could be attributed to the increase in the athermal stress caused by ion-irradiation induced defect structures, which is reflected to a decrease in the activation volume of dislocation motion in ion-irradiated W{001}.

[doi:10.2320/matertrans.ML201603]

(Received 2016/10/13; Accepted 2016/12/28; Published 2017/03/25)

Keywords: strain rate sensitivity, tungsten, activation volume, irradiation hardening, bulk equivalent hardness

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. K. Ezato, S. Suzuki, Y. Seki, K. Mohri, K. Yokoyama, F. Escourbiac, T. Hirai and V. Kuznetcov: Fusion Eng. Des. 98-99 (2015) 1281-1284.
  2. M. Merola, F. Escourbiac, A.R. Raffray, P. Chappuis, T. Hirai, S. Gicquel and I.B. Agcy: Fusion Eng. Des. 96-97 (2015) 34-41.
  3. H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida and A.U. Team: J. Nucl. Mater. 329-333 (2004) 66-73.
  4. A. Hasegawa, M. Fukuda, T. Tanno and S. Nogami: Mater. Trans. 54 (2013) 466-471.
  5. M. Fukuda, A. Hasegawa, T. Tanno, S. Nogami and H. Kurishita: J. Nucl. Mater. 442 (2013) S273-S276.
  6. V. Barabash, G. Federici, M. Rodig, L.L. Snead and C.H. Wu: J. Nucl. Mater. 283-287 (2000) 138-146.
  7. V. Barabash, G. Federici, J. Linke and C.H. Wu: J. Nucl. Mater. 313-316 (2003) 42-51.
  8. M.R. Gilbert, S.L. Dudarev, D. Nguyen-Manh, S. Zheng, L.W. Packer and J.C. Sublet: J. Nucl. Mater. 442 (2013) S755-S760.
  9. A. Hassanein, T. Sizyuk and I. Konkashbaev: J. Nucl. Mater. 390-391 (2009) 777-780.
  10. K.- I. Fukumoto, T. Onitsuka and M. Narui: Nucl. Mater. En. (2016).
  11. A. S. Wronski, G. A. Sargent and A. A. Johnson: In Flow and Fracture of Metals and Alloys in Nuclear Environments: A Symposium presented at the Sixty-seventh Annual Meeting ASTM, ASTM special technical publication No. 380, ASTM International: Chicago (1965) pp 69-85.
  12. M. Tanaka, K. Fukaya and K. Shiraishi: Trans. Jap. Inst. Metals 20 (1979) 697-705.13.
  13. M. Li, M. Eldrup, T.S. Byun, N. Hashimoto, L.L. Snead and S.J. Zinkle: J. Nucl. Mater. 376 (2008) 11-28.
  14. Y. Aono, E. Kuramoto, N. Yoshida; H. Kurishita and H. Kayano: Effets of Radiation on Materials: 16th International Symposium, ASTM STP 1175, A. S. Kumar, D. S. Galles, R. K. Nanstad and E. A. Little, Eds., ASTM: Philadelphia (1994) pp.130-143.
  15. S. M. Ohr and E. D. Bolling: UC-25-Metals, Ceramics, and Materials (Oak Ridge National Laboratory 1967) pp.13-20.
  16. S.B. McRickard: Acta Metall. 16 (1968) 969-974.
  17. J. M. Steichen and J. A. Williams: Heavy Section Steel Technology Report Program Technical Report No.32; HEDL-TME 73-74 (Hanford Engineering Development Laboratory 1973).
  18. J.M. Steichen and J.A. Williams: J. Nucl. Mater. 57 (1975) 303-311.
  19. J.M. Steichen: J. Nucl. Mater. 60 (1976) 13-19.
  20. P. Bennett and G. Sinclair: J. Basic Eng. 88 (1966) 518-524.
  21. M.J. Mayo and W.D. Nix: Acta Metall. 36 (1988) 2183-2192.
  22. E.W. Hart: Acta Metall. 15 (1967) 351-355.
  23. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel and M. Göken: J. Mater. Res. 26 (2011) 1421-1430.
  24. W.D. Nix and H. Gao: J. Mech. Phys. Solids 46 (1998) 411-425.
  25. V. Maier, C. Schunk, M. Göken and K. Durst: Philos. Mag. 95 (2015) 1766-1779.
  26. R. Kasada, S. Konishi, D. Hamaguchi, M. Ando and H. Tanigawa: Fus. Eng. Des. 109-111, Part B (2016) 1507-1510.
  27. C. Sun, J. Ma, Y. Yang, K.T. Hartwig, S.A. Maloy, H. Wang and X. Zhang: Mater. Sci. Eng. A 597 (2014) 415-421.
  28. A. Kohyama, Y. Katoh, M. Ando and K. Jimbo: Fusion Eng. Des. 51-52 (2000) 789-795.
  29. “INTERACTION OF IONS WITH MATTER” by J.F. Ziegler http://www.srim.org/, (accessed 2016-09-17).
  30. ASTM standard E521-98 (2009), Standard Practice for Neutron Radiation Damage Simulation by Charged Particle Irradiation.
  31. W. Yao: Crystal Plasticity Study of Single Crystal Tungsten by Indentation Tests. Doctoral Thesis, Ulm University, Ulm, 2012 http://dx.doi.org/10.18725/OPARU-2456.
  32. B. Lucas and W. Oliver: Metall. Mater. Trans., A 30 (1999) 601-610.
  33. Y.T. Cheng and C.M. Cheng: Surf. Coat. Tech. 133-134 (2000) 417-424.
  34. W.C. Oliver and G.M. Pharr: J. Mater. Res. 7 (1992) 1564-1583.
  35. I. Manika and J. Maniks: J. Phys. D Appl. Phys. 41 (2008) 074010.
  36. N. Moody, A. Strojny, D. Medlin, S. Guthrie and W. Gerberich: Test rate effects on the mechanical behavior of thin aluminum films, MRS Proceedings, (Cambridge Univ Press: 1998) p 281.
  37. H. Conrad: On the mechanism of yielding and flow in iron (Atomics International. Div. of North American Aviation, Inc., Canoga Park, Calif. 1961) DOI: 10.2172/4064971.
  38. H. Conrad, L. Hays, G. Schoeck and H. Wiedersich: Acta Metall. 9 (1961) 367-378.
  39. H. Conrad and W. Hayes: Am. Soc. Metals, Trans. Quart. 56 (1963).
  40. A. Seeger: Dislocations and mechanical properties of crystals (Wiley, New York, 1957) p.243.
  41. G. Gibbs: Phys. Status Solidi(b) 10 (1965) 507-512.
  42. Q. Wei, S. Cheng, K.T. Ramesh and E. Ma: Mater. Sci. Eng. A 381 (2004) 71-79.
  43. R.J. Asaro and S. Suresh: Acta Mater. 53 (2005) 3369-3382.
  44. J. Chen, L. Lu and K. Lu: Scr. Mater. 54 (2006) 1913-1918.
  45. L. Lu, R. Schwaiger, Z. Shan, M. Dao, K. Lu and S. Suresh: Acta Mater. 53 (2005) 2169-2179.
  46. R. Kasada, Y. Takayama, K. Yabuuchi and A. Kimura: Fusion Eng. Des. 86 (2011) 2658-2661.
  47. A. Emri: DEO-ER-0313/18 p.63.
  48. L.R. Greenwood and F.A. Garner: J. Nucl. Mater. 212-215 (1994) 635-639.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp