Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.567-573
© 2017 The Japan Institute of Metals and Materials

Kinetics of Reactive Diffusion in the Co/Zn System at Solid-State Temperatures

Yoshiki Takamatsu1, Minho O2 and Masanori Kajihara2

1Graduate School, Tokyo Institute of Technology, Yokohama 226-8502, Japan
2Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan

The kinetics of reactive diffusion in the Co/Zn system was experimentally examined at solid-state temperatures. In this experiment, sandwich Zn/Co/Zn diffusion couples were prepared by a diffusion bonding technique, and then isothermally annealed in the temperature range of 523-573 K for various times up to 211 h. Owing to annealing, an intermetallic layer consisting of the γ, γ1 and γ2 phases was formed at the original interface in the diffusion couple, where the thickness is much smaller for the γ and γ1 phases than for the γ2 phase. Thus, the γ2 phase predominantly governs the overall growth of the intermetallic layer. The total thickness of the intermetallic layer increases in proportion to a power function of the annealing time. The exponent of the power function takes values of 0.54-0.56 at 523-548 K and that of 0.85 at 573 K. Consequently, volume diffusion mainly controls the layer growth at 523-548 K, but interface reaction as well as volume diffusion contributes to the rate-controlling process at 573 K.

[doi:10.2320/matertrans.M2016416]

(Received 2016/11/21; Accepted 2017/01/30; Published 2017/03/25)

Keywords: reactive diffusion, metallization, solder, conductor, intermetallic compounds

We were informed that JST had been performing urgent maintenance on J-STAGE service for security measures against the attack from outside on March 8th(JST) and stopping the service from 11 o'clock on the day to 15 o'clock on March 15th. This article was available to view from 15 o'clock on March 15th for the first time afterrestarting. The corrected publication date is March 15, 2017.

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak: Binary Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, OH, 1990) p. 3417.
  2. K. Suganuma and K. Niihara: J. Mater. Res. 13 (1998) 2859-2865.
  3. S.-P. Yu, H.-J. Lin, M.-H. Hon and M.-C. Wang: J. Mater. Sci.: Mater. Electron. 11 (2000) 461-471.
  4. I. Shohji, T. Nakamura, F. Mori and S. Fujiuchi: Mater. Trans. 43 (2002) 1797-1801.
  5. M. Date and K.N. Tu: J. Mater. Res. 19 (2004) 2887-2896.
  6. M.N. Islam, Y.C. Chan, M.J. Rizvi and W. Jillek: J. Alloy. Compd. 400 (2005) 136-144.
  7. J.-W. Yoon and S.-B. Jung: J. Mater. Res. 21 (2006) 1590-1599.
  8. K. Suganuma and K.-S. Kim: J. Mater. Sci.: Mater. Electron. 18 (2007) 121-127.
  9. K. Tanida, M. Umemoto, Y. Tomita, M. Tago, R. Kajiwara, Y. Akiyama and K. Takahashi: Jpn. J. Appl. Phys. 42 (2003) 2198-2203.
  10. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita and K. Takahashi: Jpn. J. Appl. Phys. 43 (2004) 2264-2270.
  11. R. Labie: Dr. Thesis, Katholieke Universiteit Leuven, Leuven, (2007).
  12. A. La Manna, T. Buisson, M. Detalle, K.J. Rebibis, D. Velenis, W. Zhang and E. Beyne: Proc. 62nd Electronic Components and Technology Conference, San Diego, (2012) 532.
  13. W. Zhang, Z. Mai, L. Bogaerts, M. Gonzalez, G. Vakanas, A. La Manna and E. Beyne: Proc. 4th Electronic System-Integration Technology Conference, Amsterdam, (2012) 1.
  14. R. Labie, E. Beyne and P. Ratchev: Proc. 5th Electronics Packaging Technology, Singapore, (2003) 584.
  15. R. Labie, P. Ratchev and E. Beyne: Proc. 55th Electronic Components and Technology Conference, Lake Buena Vista, (2005) 449.
  16. S. Kim and J. Yu: Proc. Electronic Materials and Packaging, Taipei, (2008) 313.
  17. C. Wang and S. Chen: Intermetallics 16 (2008) 524-530.
  18. G. Humpston: J. Mater. Sci.: Mater. Electron. 21 (2010) 584-588.
  19. C. Wang and C. Kuo: Mater. Chem. Phys. 130 (2011) 651-656.
  20. W. Zhang, A. La Manna, P. Soussan and E. Beyne: Proc. 3rd IEEE Int. Workshop on Low Temperature Bonding for 3D Integration, Tokyo, (2012) 65.
  21. Y. Liang, W. Tsao, C. Chen, D. Yao, A. Huang and Y. Lai: J. Appl. Phys. 111 (2012) 043705, 1-7.
  22. C. Wang, C. Kuo, S. Huang and P. Li: Intermetallics 32 (2013) 57-63.
  23. M. O, Y. Takamatsu and M. Kajihara: Mater. Trans. 55 (2014) 1058-1064.
  24. O.V. Duchenko, V.M. Vereshchaka and V.I. Dybkov: J. Alloy. Compd. 288 (1999) 164-169.
  25. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak: Binary Alloy Phase Diagrams, vol. 2 (ASM International, Materials Park, OH, 1990) p. 1263.
  26. M. Kajihara: Acta Mater. 52 (2004) 1193-1200.
  27. M. Kajihara: Mater. Sci. Eng. A 403 (2005) 234-240.
  28. M. Kajihara: Mater. Trans. 46 (2005) 2142-2149.
  29. M. Kajihara: Diffus. Defect Forum 249 (2006) 91-96.
  30. M. Kajihara: Mater. Trans. 47 (2006) 1480-1484.
  31. Y. Tanaka and M. Kajihara: Mater. Trans. 47 (2006) 2480-2488.
  32. M. Kajihara and T. Yamashina: J. Mater. Sci. 42 (2007) 2432-2442.
  33. M. Kajihara: Mater. Trans. 49 (2008) 715-722.
  34. M. Kajihara: J. Mater. Sci. 44 (2009) 2109-2118.
  35. M. Kajihara: Mater. Trans. 51 (2010) 1242-1248.
  36. M. Kajihara: Mater. Trans. 53 (2012) 1896-1904.
  37. Y. Muranishi and M. Kajihara: Mater. Sci. Eng. A 404 (2005) 33-41.
  38. T. Hayase and M. Kajihara: Mater. Sci. Eng. A 433 (2006) 83-89.
  39. K. Mikami and M. Kajihara: J. Mater. Sci. 42 (2007) 8178-8188.
  40. M. Kajihara and Y. Tejima: J. Phys.: Conf. Ser. 165 (2009) 012091, 1-4.
  41. Y. Tejima, S. Nakamura and M. Kajihara: J. Mater. Sci. 45 (2010) 919-928.
  42. H. Sakaguchi and M. Kajihara: Abst. Autumn Meeting Jpn. Inst. Met. (2014) 229.
  43. H. Sakaguchi, M. O, N. Nakada and M. Kajihara: Abst. Autumn Meeting Jpn. Inst. Met. (2016) 318.
  44. Y. Takamatsu, M. O and M. Kajihara: Mater. Trans. 58 (2017) 16-22.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp