Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.554-560
© 2017 The Japan Institute of Metals and Materials

Temperature Dependency of Diffusional Transformation Texture Development in Steel Sheet

Yasuaki Tanaka1, 2, 3, Tomonari Inamura1, 2, Hideki Hosoda1, 2, Yoshihiro Suwa3 and Toshiro Tomida4

1Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
2Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
3Technical Research & Development Bureau, Nippon Steel & Sumitomo Metal Corporation, Amagasaki 660-0891, Japan
4Nippon Steel & Sumikin Technology Co., Ltd., Amagasaki 660-0891, Japan

The temperature dependency of diffusional transformation texture development in steel sheet was investigated by electron backscatter diffraction. The site of the precipitated pro-eutectoid ferrite (PF) grains and the orientation relation with the surrounding austenite (γ) phase were affected by the transformation temperature. The PF on the triple junction, which has a Kurdjumov-Sachs relation (K-S) with the two surrounding γ phases (double K-S [DKS] relation) with high probability, predominated in the high-temperature transformation, whereas the PF on the grain boundary, which fulfills DKS with lower probability than the PF on triple junction, became predominant with decreasing temperature. The intensity of the variant selection on transformation decreased with decreasing transformation temperature. The texture predicted by the DKS model reproduced the measured PF texture, indicating that the intensity of the variant selection obeying DKS decreased with decreasing transformation temperature. Therefore, the intensity of the variant selection was affected by the degree of supercooling. The DKS rule operates strongly on the transformation in the high-temperature region, corresponding to a low degree of supercooling. However, the DKS rule has a small effect when the temperature decrease corresponds to a high degree of supercooling.

[doi:10.2320/matertrans.M2016393]

(Received 2016/11/04; Accepted 2017/01/16; Published 2017/03/25)

Keywords: steel, variant selection, diffusional transformation, texture

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. A.D. King and T. Bell: Metall. Trans. A 6 (1975) 1419-1429.
  2. A.D. King and T. Bell: Met. Sci. J. 8 (1974) 253-260.
  3. R.K. Ray, J.J. Jonas, M.P. Butron-Guillen and J. Savoie: ISIJ Int. 34 (1994) 927.
  4. P. Chapellier, R.K. Ray and J.J. Jonas: Acta Metall. Mater. 38 (1990) 1475-1490.
  5. J. Savoie, R.K. Ray, M.P. Butron-Guillen and J.J. Jonas: Acta Metall. Mater. 42 (1994) 2511-2523.
  6. G. J. Davies and R. M. Bateman, Proc. 6th Int. Conf. on Texure and Materials (ICOTOM6), 1, (Iron and Steel Inst. of Japan, 1981), 132-148.
  7. M. Sum and J.J. Jonas: Textures and Microstructures 31 (1999) 187-215.
  8. M. Humbert, F. Wagner, W. P. Liu, C. Esling and H. J. Bunge, Proc. 8th Int. Conf. on Texure and Materials (ICOTOM8), (The Minerals, Metals & Materials Society, 1987), 743-748.
  9. J. J. Jonas, M. P. Butrbon-Guillnen and C. S. Da Costa Viana, Proc. 11th Int. Conf. on Texure and Materials (ICOTOM11), (International academic Publishers, 1998), 575-591.
  10. C.S.D.C. Viana, M.P. Butron-Guillen and J.J. Jonas: Textures and Microstructures 26 (1996) 599-610.
  11. P. Bate and B. Hutchinson: Acta Mater. 48 (2000) 3183-3192.
  12. N. Wittridge, J.J. Jonas and J. Root: Metall. Mater. Trans., A 32 (2001) 889-901.
  13. J.J. Jonas and N.J. Wittridge: Metals and Materials International 6 (2000) 211-220.
  14. N. Stanford and P.S. Bate: Adv. Eng. Mater. 53 (2005) 859-867.
  15. K. Ameyama, T. Maki and I. Tamura: J. Jpn. Inst. Met. Mater. 50 (1986) 602-611.
  16. K. Ameyama, M. Minagawa, T. Maki and I. Tamura: Tetsu-to-Hagané 9 (1988) 1839-1845.
  17. T. Tomida, M. Wakita, M. Yoshida and N. Imai, Proc. 15th Int. Conf. on Texure and Materials (ICOTOM15), (Pittsburg, 2008), 325-332.
  18. I. Lischewski and G. Gottstein: Acta Mater. 59 (2011) 1530-1541.
  19. T. Furuhara, H. Saito, G. Miyamoto and T. Maki: Mater. Sci. Forum 654-656 (2010) 7-10.
  20. E. M. Lehockey, Y.-P. Lin and O. E. Lepik : Electron Backscatter Diffraction in Materials Science, (Kluwer Academic/Plenum Publishers, 2000), pp. 247-264.
  21. A.J. Wilkinson: Scr. Mater. 44 (2001) 2379-2385.
  22. H. Réglé, N. Maruyama and N. Yoshinaga: Mater. Sci. Forum 467-470 (2004) 11-20.
  23. T. Tomida, M. Wakita, M. Yasuyama, S. Sugaya, Y. Tomota and S.C. Vogel: Acta Mater. 61 (2013) 2828-2839.
  24. H.J. Bunge, M. Humbert and P. Welch: Textures and Microstructures 6 (1984) 81-95.
  25. N. Yoshinaga, H. Inoue, K. Kawasaki, L. Kestens and B.C. De Cooman: Mater. Trans. 48 (2007) 2036-2042.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp