Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.549-553
© 2017 The Japan Institute of Metals and Materials

Effect of Trace Cu on Microstructure, Spreadability and Oxidation Resistance Property of Sn-xCu Solders

Guisheng Gan1, 2, Bida Chen1, Yiping Wu1, Donghua Yang2, Luxin Chi2 and Yingchun Liao2

1College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
2Chongqing Municipal Engineering Research Center of Institutions of Higher Education for Special Welding Materials and Technology (Chongqing University of Technology), Chongqing 400054, P. R. China

Sn-xCu (x = 0.5, 0.7, 0.9, 1.1, 1.3) solders were prepared to investigate the influence of trace Cu on the microstructure, the spreadability and the oxidation resistance property of Sn-xCu lead-free solder. Researches have shown that the Cu content had a significant impact on the microstructure, the microstructure of Sn-0.7Cu solder was almost fine dendrites and others were composed of coarser dendrites. The liquidus temperatures of Sn-xCu were around 227℃, the peak of solidification temperature had vast difference and the biggest difference was 8.8℃. The peak of solidification temperature of Sn-0.7Cu was the smallest, with 192℃. The spreading rate of Sn-xCu solders greatly improved, in which Sn-0.5Cu improves by nearly 4 percents, Sn-0.7Cu improves by nearly 3 percents and the others improve by 2 percents around from 260℃ to 290℃. With the increase of Cu content, there were no obvious changes to solder with wetting power and wetting time, interfacial IMC thickness of Sn-xCu/Cu solders. The color of oxidation film deepened due to the serious oxidation with the increase of the temperature. The oxide slag of Sn-xCu solders decreased and then increased with the increase of Cu content, in which the oxide slag of Sn-0.7Cu solder was the lowest, about 18.5% of Sn-0.5Cu and 38% of Sn-1.3Cu.


(Received 2016/11/21; Accepted 2016/12/27; Published 2017/03/25)

Keywords: Sn-xCu, lead-free solder, microstructure, spreading rate, oxidation-resistance property

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. G.S. Gan, C.H. Du and S.D. Gan: Journal of Functional Materials 44 (2013) 28-35+40. (In Chinese).
  2. G.D. Li, Y.W. Shi, Z.D. Xia and Y.P. Lei: Electron. Compon. Mater. 28 (2009) 70-73 (In Chinese).
  3. Satyanarayan and K.N. Prabhu: Adv. Colloid Interface Sci. 166 (2011) 87-118.
  4. H.J. Ji, Y.F. Qiao and M.Y. Li: Scr. Mater. 110 (2016) 19-23.
  5. H. Cheng and X.M. Pan: Spec. Cast. Nonferr. Alloy. 34 (2014) 865-868 (In Chinese).
  6. L. Liu, X.M. Pan and N. Zhao: Physics Examination and Testing 30 (2012) 32-35 (In Chinese).
  7. N. Zhao, M.L. Huang, H.T. Ma, X.M. Pan and L. Liu: Acta Physica Sinica 62 (2013) 086601.
  8. N. Zhao, X.M. Pan, D.Q. Yu, H.T. Ma and L. Wang: J. Electron. Mater. 38 (2009) 828-833.
  9. J.C.E. Mertens, A. Kirubanandham and N. Chawla: Acta Mater. 102 (2016) 220-230.
  10. G. Zeng, S.B. Xue, L. Zhang and L.L. Gao: J. Mater. Sci. Mater. Electron. 22 (2011) 565-578.
  11. J. Koo, J. Chang, Y.W. Lee, S.J. Hong, K.S. Kim and H.M. Lee: J. Alloy. Compd. 608 (2014) 126-132.
  12. A.A. El-Daly and A.E. Hammad: J. Alloy. Compd. 509 (2011) 8554-8560.
  13. L. Yang, Y. Zhang, J. Dai, Y. Jing, J. Ge and N. Zhang: Mater. Des. 67 (2015) 209-216.
  14. J. Koo, C. Lee, S.J. Hong, K.S. Kim and H.M. Lee: J. Alloy. Compd. 650 (2015) 106-115.
  15. X. Hu, Y. Li and Z. Min: J. Alloy. Compd. 582 (2014) 341-347.
  16. X. Hu, Y. Li, Z. Min and Y. Liu: J. Alloy. Compd. 625 (2015) 241-250.
  17. L.F. Li, Y.K. Cheng, G.L.E.Z. Wang, Z.H. Zhang and H. Wang: Mater. Des. 64 (2014) 15-20.
  18. B.L. Silva, N. Cheung, A. Garcia and J.E. Spinelli: J. Alloy. Compd. 632 (2015) 274-285.
  19. C.M. Gourlay, K. Nogita, S.D. Mcdonald, T. Nishimura, K. Sweatman and A.K. Dahle: Scr. Mater. 54 (2006) 1557-1562.
  20. T. Feng, F. Guo, Z.D. Xia, Y.P. Lei and Y.W. Shi: International Journal of Minerals Metallurgy & Materials 16 (2009) 677-684.
  21. L.C. Tsao, C.H. Huang, C.H. Chung and R.S. Chen: Mater. Sci. Eng. A 545 (2012) 194-200.
  22. N. Zhao, J.H. Wang, X.M. Pan, H.T. Ma and L. Wang: Journal of DaLian University of Technology 48 (2008) 661-667 (In Chinese).
  23. D.P. He, D.Q. Yu and L. Wang: Trans. Nonferrous Met. Soc. China 16 (2006) 701-708 (In Chinese).
  24. F.Y. Hung, T.S. Lui, L.H. Chen and N.T. He: J. Alloy. Compd. 457 (2008) 171-176.
  25. F. Przemysław: Appl. Surf. Sci. 257 (2010) 468-471.
  26. P. Zhou, H.J. Kang, F. Cao, Y.N. Fu, T.Q. Xiao and T.M. Wang: J. Mater. Sci. Mater. Electron. 25 (2014) 4538-4546.
  27. T.M. Wang, P. Zhou, F. Cao, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang and Q.X. Yuan: Intermetallics 58 (2015) 84-90.
  28. H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao and L. Wang: J. Alloy. Compd. 537 (2012) 286-290.
  29. C. Wu, J. Shen and C. Peng: J. Mater. Sci. Mater. Electron. 23 (2012) 14-21.
  30. K. Nogita and T. Nishimura: Scr. Mater. 59 (2008) 191-194.
  31. J.W. Xian, Z.L. Ma, S.A. Belyakov, M. Ollivier and C.M. Gourlay: Acta Mater. 123 (2017) 404-415.


© 2017 The Japan Institute of Metals and Materials
Comments to us :