Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.543-548
© 2017 The Japan Institute of Light Metals

Stress Corrosion Behavior of Mg-2 mass% Sn Alloy by Equal-Channel Angular Extrusion

Pei-Shan Chang1, Chuen-Guang Chao1 and Tzeng-Feng Liu1

1Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 1001 Ta Hsueh Road, Hsinchu, Taiwan 30010, ROC

In this work, the stress corrosion behavior of Mg-2 mass% Sn alloy in simulated body fluid solution was systematically investigated to determine its performance in a physiological environment. The effect of equal-channel angular extrusion (ECAE) on stress corrosion behavior of Mg-2 mass% Sn alloy was investigated using three-point bending test. ECAE process changed both grain size and Mg2Sn second phase distribution. The average grain size under homogenization annealing condition (about 123.61 μm) was significantly reduced to 34.32 μm after four ECAE passes. Mg2Sn phase formed more uniformly both in the grains and along the grain boundaries with ECAE process. The average volume fraction of Mg2Sn phase increased with increasing passes. The microstructure became more homogeneous with further ECAE passes. In bent-beam stress corrosion test, the average crack depths of samples underwent ECAE process were significantly lower than that of sample under homogenization annealing condition. This showed that the ECAE process could reduce crack propagation rate. The enhancement of stress corrosion resistance is attributable to uniform second phase distribution and grain refinement via ECAE process.


(Received 2016/10/20; Accepted 2017/01/13; Published 2017/03/25)

Keywords: magnesium-tin alloy, stress corrosion cracking, equal-channel angular extrusion

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen: Biomaterials 26 (2005) 3557-3563.
  2. E. Zhang, D. Yin, L. Xu, L. Yang and K. Yang: Mater. Sci. Eng. C 29 (2009) 987-993.
  3. C. Castellani, R.A. Lindtner, P. Hausbrandt, E. Tschegg, S.E. Stanzl-Tschegg, G. Zanoni, S. Beck and A.-M. Weinberg: Acta Biomater. 7 (2011) 432-440.
  4. X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng and P.K. Chu: Acta Biomater. 45 (2016) 2-30.
  5. M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias: Biomaterials 27 (2006) 1728-1734.
  6. H. Inoue, K. Sugahara, A. Yamamoto and H. Tsubakino: Corros. Sci. 44 (2002) 603-610.
  7. P. Wan, L. Tan and K. Yang: Mater. Sci. Technol. 32 (2016) 827-834.
  8. M. Yang and F. Pan: Mater. Des. 31 (2010) 68-75.
  9. J.Y. Liang, Effects of Sn on Mechanical Properties of Magnesium Alloy AZ61, Applied Mechanics and Materials, Trans Tech Publ, 2012, pp. 4161-4164.
  10. R.-c. Zeng, J. Zhang, W.-j. Huang, W. Dietzel, K.U. Kainer, C. Blawert and W. Ke: Trans. Nonferrous Met. Soc. China 16 Supplement 2 (2006) s763-s771.
  11. O. Azizi, M. Jafarian, F. Gobal, H. Heli and M.G. Mahjani: Int. J. Hydrogen Energ. 32 (2007) 1755-1761.
  12. A. Boby, A. Srinivasan, U.T.S. Pillai and B.C. Pai: Mater. Des. 88 (2015) 871-879.
  13. K.A. Winship: Adverse Drug React. Acute Poisoning Rev. 7 (1988) 19-38.
  14. X. Gu, Y. Zheng, Y. Cheng, S. Zhong and T. Xi: Biomaterials 30 (2009) 484-498.
  15. P.-S. Chang, C.-H. Chen and C.-G. Chao: Mater. Trans. 57 (2016) 1498-1504.
  16. W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong and J.D. Lee: Acta Mater. 51 (2003) 3293-3307.
  17. K. Máthis, J. Gubicza and N.H. Nam: J. Alloy. Compd. 394 (2005) 194-199.
  18. C.W. Su, L. Lu and M.O. Lai: Mater. Sci. Eng. A 434 (2006) 227-236.
  19. I.J. Beyerlein and C.N. Tomé: Mater. Sci. Eng. A 380 (2004) 171-190.
  20. M. Janeček, M. Popov, M. Krieger, R. Hellmig and Y. Estrin: Mater. Sci. Eng. A 462 (2007) 116-120.
  21. D. Orlov, K.D. Ralston, N. Birbilis and Y. Estrin: Acta Mater. 59 (2011) 6176-6186.
  22. M. Alvarez-Lopez, M.D. Pereda, J.A. del Valle, M. Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano and M.L. Escudero: Acta Biomater. 6 (2010) 1763-1771.
  23. H.-J. Tsai, C.-G. Kuo, C.-G. Chao and T.-F. Liu: Advanced Science Letters 8 (2012) 599-604.
  24. J. Jiang, A. Ma, N. Saito, Z. Shen, D. Song, F. Lu, Y. Nishida, D. Yang and P. Lin: J. Rare Earths 27 (2009) 848-852.
  25. G.H. Koch: Advanced Materials & Processes 159 (2001).
  26. B. Ullmann, J. Reifenrath, D. Dziuba, J.-M. Seitz, D. Bormann and A. Meyer-Lindenberg: Materials 4 (2011) 2197.
  27. K.J. Bundy, M.A. Vogelbaum and V.H. Desai: J. Biomed. Mater. Res. 20 (1986) 493-505.
  28. Y. Zhang, J. You, J. Lu, C. Cui, Y. Jiang and X. Ren: Surf. Coat. Tech. 204 (2010) 3947-3953.
  29. ASTM standard G39 (2011).
  30. N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K.U. Kainer, N. Hort and C. Blawert: Adv. Eng. Mater. 7 (2005) 659-693.
  31. M.M. Avedesian, H. Baker, A.S.M.I.H. Committee, ASM International(1999).
  32. W.K. Miller, Stress corrosion cracking of magnesium die casting alloys, MRS Proceedings, Cambridge Univ Press, 1988, p. 253.
  33. J.W. Guo, S.Y. Sun, Y.M. Wang, Y. Zhou, D.Q. Wei and D.C. Jia: Surf. Coat. Tech. 269 (2015) 183-190.
  34. Y. Yoshida, L. Cisar, S. Kamado and Y. Kojima: Mater. Trans. 44 (2003) 468-475.
  35. L. Cisar, Y. Yoshida, S. Kamado, Y. Kojima and F. Watanabe: Mater. Trans. 44 (2003) 476-483.
  36. Y. Zhang, M. Forsyth, B. Hinton, G.G. Wallace, Control of biodegradation of a Mg alloy in simulated body fluid, 18th International Corrosion Congress, Australasian Corrosion Association (ACA), USA, 2011.
  37. J. Yang, C.D. Yim and B.S. You: Mater. Corros. 67 (2016) 531-541.
  38. G. Cao, D. Zhang, W. Zhang and W. Zhang: Materials 9 (2016) 542.
  39. M.-C. Zhao, M. Liu, G. Song and A. Atrens: Corros. Sci. 50 (2008) 1939-1953.
  40. R.C. Koeller, R. Raj: Acta Metall. Sin.-Engl. Lett. 26 (1978) 1551-1558.
  41. E. Eberhardt, D. Stead, B. Stimpson and E. Lajtai: Eng. Fract. Mech. 59 (1998) 103-115.
  42. Y.Z. Wang, J. Atkinson, R. Akid, R. Parkins: Fatigue & fracture of engineering materials & structures 19 (1996) 51-63.


© 2017 The Japan Institute of Light Metals
Comments to us :