Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.535-538
© 2017 The Japan Institute of Metals and Materials

Dissolution Characteristic of Titanium Oxycarbide Electrolysis

Tianzhu Mu1, Fuxing Zhu1 and Bin Deng1

1State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., No.90 Taoyuan Street, East District, Panzhihua, Sichuan, 617000, P.R.China

Aiming at the problems of residual anode and free carbon generated in titanium oxycarbide electrolysis (TiC0.5O0.5), the phase composition and microstructure of TiC0.5O0.5 were characterized by XRD, SEM, EDS and POM. The results show that: titanium oxycarbide (TiC0.5O0.5) with similar crystal morphology and structure could be obtained by carbothermic reduction from TiO2 and sintering from TiC and TiO, which is composed of 15~21% gray-white titanium carbide, 56~69% yellow titanium oxycarbide and 13~25% aubergine titanium oxycarbide. The grain color of titanium oxycarbide is related to the content of carbon and oxygen. Gray-white titanium carbide contains 20~30% C, yellow titanium oxycarbide 10~50% C and 10~20% O, and aubergine titanium oxycarbide 5~10%C and 25~30% O. The structure of titanium oxycarbide is not uniformity, which results in the formation of residual anode and carbon. The gray-white and aubergine components in titanium oxycarbide are rich in TiC and TiO respectively, which generate free C, CO2, Ti2O3 and TiO2 after electrolysis.


(Received 2016/10/27; Accepted 2017/01/27; Published 2017/03/25)

Keywords: titanium oxycarbide (TiC0.5O0.5), dissolution characteristic, electrolysis, residual anode

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. A.N. Enyashin and A.L. Ivanovskii: Chem. Phys. 362 (2009) 58-64.
  2. K. Huang and Y.F. Li: J. Mater. Res. 28 (2013) 454-460.
  3. A.C. Fernandes, P. Carvalho, F. Vaz, N.M.G. Parreira, P. Goudeau, E.L. Bourhis and J-P. Rivière: Plasma Process. Polym. 4 (2007) S83-S88.
  4. H.M. Pinto, J. Coutinho, M.M.D. Ramos, F. Vaz and L. Marques: Mater. Sci. Eng. B 165 (2009) 194-197.
  5. X.H. Ning, H. Åsheim, H.F. Ren, S.Q. Jiao and H.M. Zhu: Metall. Mater. Trans., B 42 (2011) 1181-1187.
  6. C.J. Gao, B. Jiang, Z.M. Cao, K. Huang and H.M. Zhu: Rare Met. 296 (2010) 1-5.
  7. T. Hashishin, T. Yamamoto, M. Ohyanagi and Z.A. Munir: J. Am. Ceram. Soc. 86 (2003) 2067-2073.
  8. L.L. Zhang, S.B. Wang, S.Q. Jiao, K. Huang and H.M. Zhu: Electrochim. Acta 75 (2012) 357-359.
  9. S.Q. Jiao and H.M. Zhu: J. Alloy. Compd. 438 (2007) 243-246.
  10. S.Q. Jiao and H.M. Zhu: J. Mater. Res. 21 (2006) 2172-2175.
  11. J.C. Withers, R.O. Loutf and J.P. Laughlin: Adv. Perform. Mater. 22 (2007) 66-70.
  12. O.S. Kjos, G.M. Haarberg and A.M. Martinez: Key Eng. Mater. 436 (2010) 93-101.
  13. F. Derek: ECS Trans. 50 (2013) 3-13.
  14. B. Jiang, K. Huang, Z.M. Cao and H.M. Zhu: Metall. Mater. Trans., A 43 (2012) 3510-3514.
  15. W. Mo: Titanium, (Metallurgical industry press, Beijing, 2008) pp.43-47.


© 2017 The Japan Institute of Metals and Materials
Comments to us :