Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.520-523
© 2017 The Japan Institute of Metals and Materials

Enhanced Wear Resistance of Zr-Based Bulk Metallic Glass by Thermal Oxidation Treatment

Kun Zhou1, Shujie Pang1, Chen Chen1, Ying Liu1, Wei Yang1 and Tao Zhang1

1Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Enhancement of surface properties such as wear resistance of Zr-based bulk metallic glasses (BMGs) is important for many applications of the materials. In this paper, the effect of thermal oxidation on the tribological behavior of a Zr-Ti-Cu-Al-Y BMG was studied. It is found that oxidation treatment greatly improves the wear resistance of the BMG, which is ascribed to the formation of a layer of oxidized scale. This result is beneficial for the improvement of surface properties and further application of the Zr-based BMGs.

[doi:10.2320/matertrans.M2016356]

(Received 2016/11/21; Accepted 2016/12/21; Published 2017/02/25)

Keywords: bulk metallic glass, oxidation, indentation and hardness, wear and tribology

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. A. Inoue and A. Takeuchi: Acta Mater. 59 (2011) 2243-2267.
  2. J. Schroers, G. Kumar, T.M. Hodges, S. Chan and T.R. Kyriakides: JOM-J. Min. Met. Mat. S. 61 (2009) 21-29.
  3. P.J. Blau: Wear 250 (2001) 431-434.
  4. X.Y. Fu, T. Kasai, M.L. Falk and D.A. Rigney: Wear 250 (2001) 409-419.
  5. G. Li, Y.Q. Wang, L.M. Wang, Y.P. Gao, R.J. Zhang, Z.J. Zhan, L.L. Sun, J. Zhang and W.K. Wang: J. Mater. Res. 17 (2002) 1877-1880.
  6. T. Gloriant: J. Non-Cryst. Solids 316 (2003) 96-103.
  7. M.Z. Ma, R.P. Liu, Y. Xiao, D.C. Lou, L. Liu, Q. Wang and W.K. Wang: Mater. Sci. Eng. A 386 (2004) 326-330.
  8. H.W. Jin, R. Ayer, J.Y. Koo and R.R.U. Ramamurty: J. Mater. Res. 22 (2007) 264-273.
  9. Z. Parlar, M. Bakkal and A.J. Shih: Intermetallics 16 (2008) 34-41.
  10. M.Z. Ma, H.T. Zong, H.Y. Wang, W.G. Zhang, A.J. Song, S.X. Liang, Q. Wang, X.Y. Zhang, Q. Jing and G. Li: Mater. Lett. 62 (2008) 4348-4350.
  11. J. Kong, D. Xiong, J. Li, Q. Yuan and R. Tyagi: Tribol. Lett. 35 (2009) 151-158.
  12. Y. Wang, L.L. Shi, D.L. Duan, S. Li and J. Xu: Mater. Sci. Eng. C 37 (2014) 292-304.
  13. N. Hua, Z. Zheng, H. Fang, X. Ye, C. Lin, G. Li, W. Wang, W. Chen and T. Zhang: J. Non-Cryst. Solids 426 (2015) 63-71.
  14. H. Wu, I. Baker, Y. Liu, X. Wu and P.R. Munroe: Intermetallics 25 (2012) 115-125.
  15. H. Dong and T. Bell: Wear 238 (2000) 131-137.
  16. F. Borgioli, E. Galvanetto, F. Iozzelli and G. Pradelli: Mater. Lett. 59 (2005) 2159-2162.
  17. K. Zhou, Y. Liu, S. Pang and T. Zhang: J. Alloy. Compd. 656 (2016) 389-394.
  18. C.S. Yust and F.J. Carignan: Tribol. Trans. 28 (1985) 245-252.
  19. M.S. Suh, Y.H. Chae and S.S. Kim: Wear 264 (2008) 800-806.
  20. A. Leyland and A. Matthews: Wear 246 (2000) 1-11.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp