Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.513-519
© 2017 The Japan Institute of Metals and Materials

Anisotropic Analysis of Nanocrystalline Bismuth Telluride Thin Films Treated by Homogeneous Electron Beam Irradiation

Shohei Kudo1, Saburo Tanaka2, Koji Miyazaki3, Yoshitake Nishi1 and Masayuki Takashiri1

1Department of Materials Science, Tokai University, Hiratsuka 259-1292, Japan
2Department of Mechanical Engineering, College of Engineering, Nihon University, Koriyama 963-8642, Japan
3Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

The in-plane and cross-plane transport properties of nanocrystalline bismuth telluride (Bi2Te3) thin films were evaluated to analyze their anisotropic behavior. Bi2Te3 thin films were prepared via radio frequency (RF) magnetron sputtering, followed by a subsequent treatment of thermal annealing and homogeneous electron beam (EB) irradiation at various EB doses. The crystallographic properties of the thin films were determined by X-ray diffraction (XRD) analysis. It was determined that the crystal orientation (Lotgering factor; F value) of Bi2Te3 thin films can be controlled by homogeneous EB irradiation treatments, without resulting in crystal growth. The electrical conductivity and Seebeck coefficient were measured in the in-plane direction of the films, and the thermal conductivity was measured in the cross-plane direction using the 3ω method. The anisotropic analysis was performed by combining the F value of the thin films with a simple model based on the transport properties of the basal and lateral planes of single- and poly-crystal Bi2Te3. The electrical and thermal conductivities of the in-plane and cross-plane directions of the EB-irradiated thin films clearly differed; however, there was no significant difference between the Seebeck coefficient values of the two planes. Finally, we determined that the figure of merit, ZT, was enhanced by the homogeneous EB irradiation treatment, and the in-plane ZT value was 25% greater than that of the cross-plane direction.


(Received 2016/08/25; Accepted 2016/12/21; Published 2017/02/25)

Keywords: anisotropic, Lotgering factor, electron beam irradiation, thermoelectric, bismuth telluride

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J.A. Paradiso and T. Starner: Pervasive Comput. 4 (2005) 18-27.
  2. N.S. Hudak and G.G. Amatucci: J. Appl. Phys. 103 (2008) 101301.
  3. Z. Wang, A. Chen, R. Winslow, D. Madan, R.C. Juang, M. Nill, J.W. Evans and P.K. Wright: J. Micromech. Microeng. 22 (2012) 094001.
  4. D. M. Rowe: CRC Handbook of Thermoelectrics, (CRC, Boca Raton, 1995) Sec.19, pp. 211-237.
  5. H. Kaibe, Y. Tanaka, M. Sakata and I. Nishida: J. Phys. Chem. Solids 50 (1989) 945-950.
  6. P.J. Taylor, J.R. Maddux, W.A. Jesser and F.D. Rosi: J. Appl. Phys. 85 (1999) 7807-7813.
  7. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn: Nature 413 (2001) 597-602.
  8. N. Peranio, O. Eibl and J. Nurnus: J. Appl. Phys. 100 (2006) 114306.
  9. K. Matsuoka, M. Okuhata and M. Takashiri: J. Alloy. Compd. 649 (2015) 721-725.
  10. H. Obara, S. Higomo, M. Ohta, A. Yamamoto, K. Ueno and T. Iida: Jpn. J. Appl. Phys. 48 (2009) 085506.
  11. Y. Zhao, J.S. Dyck, B.M. Hernandez and C. Burda: J. Phys. Chem. C 114 (2010) 11607-11613.
  12. M. Takashiri, S. Tanaka and K. Miyazaki: J. Electron. Mater. 43 (2014) 1881-1889.
  13. M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro and C. Adachi: Appl. Phys. Lett. 98 (2011) 023114.
  14. M. Takashiri, S. Tanaka, H. Hagino and K. Miyazaki: J. Appl. Phys. 112 (2012) 084315.
  15. K. Agarwal and B.R. Mehta: J. Appl. Phys. 116 (2014) 083518.
  16. M. Takashiri, K. Kurita, H. Hagino, S. Tanaka and K. Miyazaki: J. Appl. Phys. 118 (2015) 065301.
  17. D. Song and G. Chen: Appl. Phys. Lett. 84 (2004) 687-689.
  18. K. Nishimura, H. Wang, T. Fukunaga, K. Kurata and H. Takamatsu: Int. J. Heat Mass Transfer 95 (2016) 727-734.
  19. M. Takashiri, K. Imai, M. Uyama, H. Hagino, S. Tanaka, K. Miyazaki and Y. Nishi: J. Alloy. Compd. 612 (2014) 98-102.
  20. M. Takashiri, K. Imai, M. Uyama, H. Hagino, S. Tanaka, K. Miyazaki and Y. Nishi: J. Appl. Phys. 115 (2014) 214311.
  21. K. Kusagaya, H. Hagino, S. Tanaka, K. Miyazaki and M. Takashiri: J. Electron. Mater. 44 (2015) 1632-1636.
  22. Y. Nishi, S. Takagi, K. Yasuda and K. Itoh: J. Appl. Phys. 70 (1991) 367-371.
  23. Y. Nishi, T. Toriyama, K. Oguri, A. Tonegawa and K. Takayama: J. Mater. Res. 16 (2001) 1632-1635.
  24. Y. Nishi, H. Sato, K. Iwata and K. Iwata: J. Mater. Res. 24 (2009) 3503-3509.
  25. M. Takashiri, S. Tanaka, K. Miyazaki and H. Tsukamoto: J. Alloy. Compd. 490 (2010) L44-L47.
  26. S. Kudo, H. Hagino, S. Tanaka, K. Miyazaki and M. Takashiri: J. Electron. Mater. 44 (2015) 2021-2025.
  27. F.K. Lotgering: J. Inorg. Nucl. Chem. 9 (1959) 113-123.
  28. G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics (Springer, Berlin, 2001) Chap. 5.1, pp. 111-131.
  29. A. Jacquot, N. Farag, M. Jaegle, M. Bobeth, J. Schmidt, D. Ebling and H. Böttner: J. Electron. Mater. 39 (2010) 1861-1868.
  30. H.J. Goldsmid: J. Appl. Phys. 32 (1961) 2198-2202.
  31. T. Kajihara, K. Fukuda, Y. Sato and M. Kikuchi, Proc. 17th Int. Conf. on Thermoelectrics (1998) pp. 129-133.
  32. M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai and H. Tsukamoto: J. Appl. Phys. 104 (2008) 084302.
  33. C. Liao, Y. Wang and H. Chu: J. Appl. Phys. 104 (2008) 104312.
  34. Z. Wang, J. Alaniz, W. Jang, J.E. Garay and C. Dames: Nano Lett. 11 (2011) 2206-2213.
  35. G.D. Mahan and J.O. Sofo: Proc. Natl. Acad. Sci. USA 93 (1996) 7436-7439.
  36. A. Giani, A. Boulouz and F. Pascal-Delannoy: J. Mater. Sci. Lett. 18 (1999) 541-543.
  37. M. Takashiri, K. Miyazaki and H. Tsukamoto: Thin Solid Films 516 (2008) 6336-6343.
  38. R. Rostek, V. Sklyarenko and P. Woias: J. Mater. Res. 26 (2011) 1785-1790.
  39. M. Takashiri, S. Tanaka, H. Hagino and K. Miyazaki: Int. J. Heat Mass Transfer 76 (2014) 376-384.


© 2017 The Japan Institute of Metals and Materials
Comments to us :