Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.505-508
© 2017 The Japan Institute of Metals and Materials

The Synthesis, Characterization and Optical Properties of Nanocrystallined Cerium Dioxide by the Hydrothermal Method

I-Tsan Liu1, Min-Hsiung Hon1 and Lay Gaik Teoh2

1Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
2Department of Mechanical Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan

Nano-sized cerium dioxides (CeO2) are prepared by the hydrothermal method, using nitric cerium. The XRD study shows that nano-sized CeO2 has an appreciable amount of cubic phase. The nano-sized CeO2 obtained has an average particle size in the range of 4.5-10.3 nm. TEM micrographs show well-dispersed spherical-like and cubic-like CeO2 nanoparticles. The UV-DRS absorption spectrum for alkali-treated CeO2 shows an absorption peak at 365~384 nm.

[doi:10.2320/matertrans.M2016285]

(Received 2016/08/12; Accepted 2016/12/13; Published 2017/02/25)

Keywords: cerium oxide, hydrothermal method, nano-sized, optical properties

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. S. Bernal, J.J. Calvino, M.A. Cauqui, J.M. Gatica, C. Larese, J.A. Perez Omil and J.M. Pintado: Catal. Today 50 (1999) 175-206.
  2. P. Patsalas, S. Logothetidis and C. Metaxa: Appl. Phys. Lett. 81 (2002) 466-468.
  3. S.D. Park, J.M. Vohs and R.J. Gorte: Nature 404 (2000) 265-267.
  4. X.D. Feng, D.C. Sayle, Z.L. Wang, M.S. Paras, B. Santora, A.C. Sutorik, T.X.T. Sayle, Y. Yang, Y. Ding, X.D. Wang and Y.S. Her: Science 312 (2006) 1504-1508.
  5. T. Masui, K. Fujiwara, K. Machida and G. Adachi: Chem. Mater. 9 (1997) 2197-2204.
  6. T.S. Stefanik and H.L. Tuller: J. Eur. Cera. Soc. 21 (2001) 1967-1970.
  7. N. Imanaka, T. Masui, H. Hirai and G. Adachi: Chem. Mater. 15 (2003) 2289-2291.
  8. E.P. Murray, T. Tsai and S.A. Barnett: Nature 400 (1999) 649-651.
  9. L.N. Gu and G.Y. Meng: Mater. Res. Bull. 42 (2007) 1323-1331.
  10. F. Li, X.H. Yu, H.J. Pan, M.L. Wang and X.Q. Xin: Solid State Sci. 2 (2000) 767-772.
  11. Y.X. Li, W.F. Chen, X.Z. Zhou, Z.Y. Gu and C.M. Chen: Mater. Lett. 59 (2005) 48-52.
  12. C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang and L.Q. Chen: Nanotechnology 16 (2005) 1454-1463.
  13. F.E. Ghodsi, F.Z. Tepehan and G.G. Tepehan: Surf. Sci. 601 (2007) 4497-4501.
  14. Z.L. Wang and X.D. Feng: J. Phys. Chem-US 107B (2003) 13563-13566.
  15. R.K. Pati, I.C. Lee, K.J. Gaskell and S.H. Ehrman: Langmuir 25 (2009) 67-70.
  16. S. Somiya and T. Akiba: J. Eur. Cera. Soc. 19 (1999) 81-87.
  17. B. Djuričić and S. Pickering: J. Eur. Cera. Soc. 19 (1999) 1925-1934.
  18. A.I.Y. Tok, F.Y.C. Boey, Z. Dong and X.L. Sun: J. Mater. Process. Technol. 190 (2007) 217-222.
  19. S. Yabe and T. Sato: J. Solid State Chem. 171 (2003) 7-11.
  20. S.V.N.T. Kuchibhatla, A.S. Karakoti and S. Seal: Nanotechnology 18 (2007) 075303-075307.
  21. F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson and I.P. Herman: Appl. Phys. Lett. 80 (2002) 127-129.
  22. A. Stary, C. Robert and A. Sarasin: Mutat. Res. DNA Repair 383 (1997) 1-8.
  23. L.X. Yin, Y.Q. Wang, G.S. Pang, Y. Koltypin and A. Gedanken: J. Colloid Interface Sci. 246 (2002) 78-84.
  24. H.I. Chen and H.Y. Chang: Ceram. Int. 31 (2005) 795-802.
  25. F. Zhang, Q. Jin and S.W. Chan: J. Appl. Phys. 95 (2004) 4319-4326.
  26. J. Schoonman: Solid State Ionics 157 (2003) 319-326.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp