Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.494-498
© 2017 The Japan Institute of Metals and Materials

Design and Fabrication of Wire Grid Polarizer by Nanoimprinting and Glancing Angle Deposition Processes

Hyungjun Jang1, Ga-Young Shin1, Ho-Young Jang1, Jonghyun Ju1, Jiseok Lim2 and Seok-min Kim1

1School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
2School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea

We report a simple and cost-effective fabrication method for a wire grid polarizer. The wire grid polarizer was fabricated by incorporating UV nanoimprinting and glancing angle deposition processes. A silicon pattern with a 40 nm line width, 100 nm pitch, and 100 nm height was fabricated by electron beam (E-beam) lithography and reactive ion etching processes. The UV nanoimprinting process was performed on a glass substrate and aluminum nanowires, with a height of 70 nm, were subsequently generated with a glancing angle deposition process. P-polarization transmittance above 55% and an extinction ratio of 31.1~6.1 were measured in the visible wavelength range.


(Received 2016/06/14; Accepted 2016/12/13; Published 2017/02/25)

Keywords: wire grid polarizer, nano metal wire fabrication, glancing angle deposition, ultraviolet nanoimprinting

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. S.H. Kim, J.D. Park and K.D. Lee: Nanotechnology 17 (2006) 4436-4438.
  2. K.-W. Chien and H.-P.D. Shieh: Appl. Opt. 43 (2004) 1830-1834.
  3. C.-C. Tsai and S.-T. Wu: Appl. Opt. 47 (2008) 2882-2887.
  4. J. Ma, X. Ye and B. Jin: Displays 32 (2011) 49-57.
  5. Z. Ge and S.-T. Wu: Appl. Phys. Lett. 93 (2008) 121104.
  6. M. Xu, H. Urbach, D. De Boer and H. Cornelissen: Opt. Express 13 (2005) 2303-2320.
  7. X.-J. Yu and H.-S. Kwok: Appl. Opt. 42 (2003) 6335-6341.
  8. J.J. Wang, F. Walters, X. Liu, P. Sciortino and X. Deng: Appl. Phys. Lett. 90 (2007) 1104.
  9. T. Weber, T. Kasebier, E.B. Kley and A. Tunnermann: Opt. Lett. 36 (2011) 445-447.
  10. I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi and J. Nishii: Opt. Lett. 36 (2011) 3882-3884.
  11. M. Ma, D.S. Meyaard, Q. Shan, J. Cho, E.F. Schubert, G.B. Kim, M.-H. Kim and C. Sone: Appl. Phys. Lett. 101 (2012) 061103.
  12. K. Asano, S. Yokoyama, A. Kemmochi and T. Yatagai: Appl. Opt. 53 (2014) 2942-2948.
  13. S.W. Ahn, K.D. Lee, J.S. Kim, S.H. Kim, J.D. Park, S.H. Lee and P.W. Yoon: Nanotechnology 16 (2005) 1874-1877.
  14. J.J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters and X. Deng: Appl. Phys. Lett. 89 (2006) 141105.
  15. Y.H. Lee, P. Peranantham, C.K. Hwangbo and S.M. Kim: J. Korean Phys. Soc. 61 (2012) 1714-1719.
  16. J. Ju, Y.-A. Han, J. Kim, E. Byeon, S.-M. Kim, Y.-H. Lee and C.K. Hwangbo: Jpn. J. Appl. Phys. 52 (2013) 10MA11.
  17. Y. Ekinci, H.H. Solak, C. David and H. Sigg: Opt. Express 14 (2006) 2323-2334.
  18. J. Ju, E. Byeon, Y.-A. Han and S.-M. Kim: Micro & Nano Letters, IET 8 (2013) 370-373.
  19. S.M. Kim, W. Zhang and B.T. Cunningham: Opt. Express 18 (2010) 4300-4309.
  20. Y.-P. Zhao, D.-X. Ye, G.-C. Wang and T.-M. Lu: Nano Lett. 2 (2002) 351-354.
  21. Q. Zhou, Z. Li, J. Ni and Z. Zhang: Mater. Trans. 52 (2011) 469-473.
  22. J. Ju, Y.A. Han, J. Kim, E. Byeon, S.M. Kim, Y.H. Lee and C.K. Hwangbo: Jpn. J. Appl. Phys. 52 (2013).
  23. H.-J. Choi, T.-H. Kim and S.-M. Kim: Electron. Lett. 47 (2011) 200-202.
  24. E. Palik: Handbook of optical constants of solids, (Academic, Orlando, 1985) pp. 398-399.
  25. M. Dodge: “Refractive Index” in Handbook of Laser Science and Technology, Vol. 4, Optical Materials : Part 2 (CRC press, Boca Raton, 1986) p. 30.


© 2017 The Japan Institute of Metals and Materials
Comments to us :