Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.485-493
© 2017 Japan Foundry Engineering Society

Outflow Liquid Falling Position Control Considering Lower Pouring Mouth Position with Collision Avoidance for Tilting-Type Automatic Pouring Machine

Atsushi Ito1, Yoshiyuki Noda2, Ryosuke Tasaki1 and Kazuhiko Terashima1

1Graduate School of Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
2University of Yamanashi, Kofu 400-8510, Japan

This paper presents an advanced control system for tilting-ladle-type automatic pouring machines used in the metal casting industry. In order to pour liquid from the lowest possible position, an approach for motion trajectory generation of pouring ladle is proposed in this paper. The proposed approach controls the falling position of outflow liquid and avoids collision between ladle and obstacles. This approach defined three pouring modes derived from the positional relation between ladle and obstacles. Pouring mode switching was also proposed to shift to the lowest pouring mode depending on pouring conditions and ladle posture. An analytical algorithm of the falling position control system was built. The effectiveness of the proposed control system was validated through experiments using a laboratory automatic pouring machine with a monitoring system.

This Paper was Originally Published in Japanese in J. JFS 88 (2016) 27-36.


(Received 2016/11/01; Accepted 2016/12/02; Published 2017/02/25)

Keywords: automatic pouring machine, falling position control, motion trajectory generation, lower position pouring, collision avoidance

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. K. Terashima: SOKEIZAI 39 (1998) 1.
  2. Y.S. Lerner: Mod. Cast. 93 (2003) 44.
  3. J. Sato and K. Yoshida: Industrial heating 29 (1992) 19.
  4. K. Shinohara and H. Hiroyuki: J. Soc. Automot. Eng. Jpn. 46 (1992) 79.
  5. S. Tokai, K. Yamabayashi and Y. Hashimoto: J. JFS 82 (2010) 47.
  6. Y. Kuriyama, M. Maeda, K. Yano and Y. Michioka: J. JFS 82 (2010) 531.
  7. R. Kusakabe and M. Yamada: Proc. 54th Japan Joint Automatic Control Conference (2011) p.1714.
  8. Y. Noda and K. Terashima: Trans. Jpn. Soc. Mech. Eng. Ser. C 72 (2006) 3147.
  9. Y. Noda, R. Fukushima and K. Terashima: Trans. Jpn. Soc. Mech. Eng. Ser. C 78 (2012) 3446.
  10. E. Tabatabaei: Ductile Iron News (2000) p.1.
  11. W. Pflug and E. Tabatabaei: Fondry Management & Technology 130 (2002) 10.
  12. S. Paranjape and P.D. Chaubal: Metalworld (2010) 24.
  13. H. Doisy: Proc. 62nd Indian Foundry Congress, India (IIF, 2014) p.18.
  14. W. R. Pflug: Proc. 62nd Indian Foundry Congress, India (IIF, 2014) p.26.
  15. V. I. Dubodelov, V. K. Pogorsky and M. S. Goryuk: Proc. 9th International Symposium on Science and Processing of Cast Iron, Egypt (TTP, 2009) p.481.
  16. K. Iwata, T. Choh and M. Inoue: Tetsu-to-Hagané 68 (1982) 2461.
  17. C. Samnang, Y. Noda, K. Terashima and K. Hashimoto: Proc. European Metallurgical Conference 2007 Vol.4, Germany (GDMB, 2007) p.1899.
  18. K. Terashima, K. Yano, Y. Sugimoto and M. Watanabe: Proc. 10th IFAC symposium on Automation in Mining, Mineral and Metal Processing, Japan (IFAC, 2001) p.182.
  19. A. Ito, Y. Noda and K. Terashima: Proc. IEEE Multi-Conference on System and Control, Croatia (IEEE, 2012) p.246.
  20. A. Ito, R. Tasaki, Y. Noda and K. Terashima: Rep. the 161st JFS Meeting (2012) p.107.


© 2017 Japan Foundry Engineering Society
Comments to us :