Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.465-470
© 2017 The Japan Institute of Metals and Materials

Effect of the Added Polyethylene Glycol Molecular Weight and Calcination Heating Rate on the Morphology of TiO2 Films Formed by Sol-Gel

Kumpon Leelaruedee1, Patama Visuttipitukul1 and Niti Yongvanich2

1Department of Metallurgical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
2Department of Materials Science and Engineering, Silpakorn University, Nakorn Pathom 73000, Thailand

This research investigated the changing morphology of silicon (Si)-supported titanium dioxide (TiO2) thin films with different heating rates and molecular weights (MW) of the added polyethylene glycol (PEG). The TiO2 films were deposited on a Si wafer (100) by sol-gel spin coating with PEG (MW = 6,000 or 35,000 g·mol−1) as pore generating agents. Calcination at 450℃ completely decomposed all the organic residues in the TiO2 sol, and the resultant films were in the anatase phase. The combustion nature of PEG was found to be the main factor controlling the film's morphology, where the exothermic heat of PEG combustion tended to be higher with increased heating rates and dependent on the type of PEG (extended and folded chain crystal). At heating rates of 10℃·min−1 or higher, the exothermic heat led to localized grain coalescence in the TiO2 films, which decreased the film porosity. However, this exothermic heat also simultaneously induced pore agglomeration. Hence, the average pore size of PEG-containing films were larger than in films without PEG. In contrast, the heating rate did not significantly affect the morphology films without PEG.

[doi:10.2320/matertrans.M2016274]

(Received 2016/07/29; Accepted 2016/12/26; Published 2017/02/25)

Keywords: poly-ethyleneglycol, titanium dioxide thin film, heating rate

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. M. Vishwas, S.K. Sharma, K.N. Rao, S. Mohan, K.V.A. Gowda and R.P.S. Chakradhar: Spectrochimica Acta Part A. 74 (2009) 839-842.
  2. S. Miura, S. Noda, K. Suzuki, M. Inoue, K. Murakami, F. Ohashi and S. Nonomura: Mater. Trans. 56 (2015) 274-276.
  3. R. Prado, G. Beobide, A. Marcaide, J. Goikoetxea and A. Aranzabe: Solar Energy Mater. Solar Cells 94 (2010) 1081-1088.
  4. M. Vishwas, S.K. Sharma, K.N. Rao, S. Mohan, K.V.A. Gowda and R.P.S. Chakradhar: Spectrochimica Acta Part A. 75 (2010) 1073-1077.
  5. N. Batra, P. Kumar, S.K. Srivastava, R. Kumar, R. Srivastava, M. Deepa, B.R. Awasthy and P.K. Singh: Mater. Chem. Phys. 130 (2011) 1061-1065.
  6. L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain and S. Tanemura: Appl. Surf. Sci. 212-213 (2003) 255-263.
  7. B.E. Yoldas and D.P. Partlow: Thin Solid Films 129 (1985) 1-14.
  8. N. Arconada, Y. Castro and A. Duran: Applied Catalysis A. 385 (2010) 101-107.
  9. B. Guo, Z. Liu, L. Hong and H. Jiang: Surf. Coat. Tech. 198 (2005) 24-29.
  10. B. Guo, Z. Liu, L. Hong, H. Jiang and J.W. Lee: Thin Solid Films 479 (2005) 310-315.
  11. S. Bu, Z. Jin, X. Liu, L. Yang and Z. Cheng: Mater. Chem. Phys. 88 (2004) 273-279.
  12. J. Yu, X. Zhao and Q. Zhao: Thin Solid Films 379 (2000) 7-14.
  13. I.N. Kuznetsova, V. Blaskov and L. Znaidi: Mater. Sci. Eng. B 137 (2007) 31-39.
  14. A. Verma, S.B. Samanta, A.K. Bakhshi and S.A. Agnihotry: Solar Energy Mater. Solar Cells 88 (2005) 47-64.
  15. M.S. Ghamsari and A.R. Bahramian: Mater. Lett. 62 (2008) 361-364.
  16. J.M. Ginés, M.J. Arias, A.M. Rabasco, C. Novak, A. Ruiz-Conde and P.J. Sanchez-Soto: J. Therm. Anal. 46 (1996) 291-304.
  17. K. Pielichowski and K. Flejtuch: Macromol. Mater. Eng. 288 (2003) 259-264.
  18. R.L. Blaine and H.E. Kissinger: Thermochim. Acta 540 (2012) 1-6.
  19. S. Šegota, L. Curkovic, D. Ljubas, V. Svetlicic, I.F. Houra and N. Tomasic: Ceram. Int. 37 (2011) 1153-1160.
  20. N. Arconada, A. Duran, S. Suarez, R. Portela, J.M. Coronado, B. Sanchez and Y. Castro: Appl. Catal. B 86 (2009) 1-7.
  21. R. German: Sintering: From Empirial Observations to Scientific Principles: (Elsevier Inc., Marquis one, Atlanta, 2014) pp. 227-246.
  22. F. Wakai, M. Yoshida, Y. Shinoda and T. Akatsu: Acta Mater. 53 (2005) 1361-1371.
  23. L. Dejonghe and M. Rahaman: Handbook of Advanced Ceramics. (Elsevier Inc., Marquis one, Atlanta, 2003) pp. 187-257


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp