Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.457-464
© 2017 The Japan Institute of Metals and Materials

Adhesive Force of Laminations of Titanium Untreated and Polycarbonate Homogeneously Irradiated by Low Potential Electron Beam Prior to Assembly and Hot-Press

Masataka Tomizawa1, Michael C. Faudree2, Chisato Kubo1, Masae Kanda2, Itaru Jimbo1, 2 and Yoshitake Nishi1, 2

1Graduate School of Engineering, Tokai University, Hiratsuka 259-1292, Japan
2Department of Materials Science, Tokai University, Hiratsuka 259-1292, Japan

A 2-layer Titanium/polycarbonate (Ti/PC) laminated sheet treated by homogeneous low energy electron beam irradiation (HLEBI) to only the PC side prior to assembly and hot press at 438 K for 3.0 min under 20 MPa without the use of fasteners, rivets or glue was investigated. Experimental results showed the 0.30 MGy HLEBI dose appeared to be at or near the optimum, achieving mean adhesive force of peeling resistance, oFp at high accumulative probability of peeling Pp = 0.94 of 141.4 Nm−1 compared to 20.0 Nm−1 for the untreated (without HLEBI). Notably, the 0.30 MGy HLEBI raised the oFp at high- Pp of 0.94 significantly, 706%. Moreover, based on the 3-parameter Weibull equation, the 0.30 MGy-HLEBI apparently enhanced the statistically lowest oFp (Fs) from 0 N·m−1 for the untreated to 15.1 N·m−1 for the 0.30 MGy samples, as well as at low-Pp of 0.06 (the lowest experimental oFp) from 0 for the untreated to 25.5 N·m−1 for the 0.30 MGy samples. Based on the results of XPS (X-ray photoelectron spectroscopy) analysis, chemical bonds occurred. When HLEBI cut the chemical bonds and generated active terminated atoms with dangling bonds at PC surface, they probably induced chemical bonding with the Ti. Furthermore, the HLEBI to only the PC side acted to generate the PC activating strong adhesion to the Ti making the interface stronger than the internal cohesion of the PC itself. In addition, 0.30 MGy-HLEBI apparently increased the active bonds sites of C-O and C-C and then decreased the inactive bonds sites of OH on the PC and Ti, resulting in strengthening the peeling resistance. Therefore, increasing adhesion force between the laminated sheets could be explained.

[doi:10.2320/matertrans.M2016367]

(Received 2016/10/18; Accepted 2016/12/21; Published 2017/02/25)

Keywords: polycarbonate, lamination, adhesive force, electron beam, peeling resistance, titanium

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. N. Amanat, N.L. James and D.R. McKenzie: Med. Eng. Phys. 32 (2010) 690-699.
  2. Q. Yang, S. Mironov, Y.S. Sato and K. Okamoto: Mater. Sci. Eng. A 527 (2010) 4389-4398.
  3. R. Zitoune and F. Collombet: Compos. Part A 38 (2007) 858-866.
  4. J. Davim, P. Reis and C. Antonio: Compos. Sci. Technol. 64 (2004) 289-297.
  5. R. Matsuzaki, M. Shibata and A. Todoroki: Compos. Part A 39 (2008) 154-163.
  6. K. Allen: Int. J. Adhes 23 (2003) 87-93.
  7. C. Kubo, M. Kanda, K. Miyazaki, T. Okada, M.C. Faudree and Y. Nishi: Mater. Trans. 56 (2015) 1821-1826.
  8. A. Oshima, H. Nagai, F. Muto, T. Miura and M. Washio: J. Polym. Sci. Tech. 19 (2006) 123-127.
  9. M. Zenkiewicz: Int. J. Adhes. 24 (2004) 259-262.
  10. Y. Nishi, M. Uyama, H. Kawazu, H. Takei, K. Iwata, H. Kudoh and K. Mitsubayashi: Mater. Trans. 53 (2012) 1657-1664.
  11. Y. Nishi, H. Kawazu, H. Takei, K. Iwata, H. Kudoh and K. Mistubayashi: Mater. Trans. 52 (2011) 1943-1948.
  12. C. Kubo, T. Okada, M. Uyama, M. Kanda and Y. Nishi: Mater. Trans. 55 (2014) 1742-1749.
  13. T. Okada, M. Kanda, M.C. Faudree and Y. Nishi: Mater. Trans. 55 (2014) 1587-1590.
  14. A. Minegishi, T. Okada, M. Kanda, M.C. Faudree and Y. Nishi: Mater. Trans. 56 (2015) 1169-1173.
  15. A. Minegishi, M. Kanda, M.C. Faudree and Y. Nishi: Mater. Trans. 57 (2016) 513-518.
  16. M. Uyama, N. Fujiyama, T. Okada, M. Kanda and Y. Nishi: Mater. Trans. 55 (2014) 561-565.
  17. T. Shimaru: Technol. Adhes. Seal. 3 (1959) 121-130.
  18. M. Faudree and Y. Nishi: Mater. Trans. 53 (2012) 1412-1419.
  19. R. Suenaga, M. Kanda, N. Hironaka and Y. Nishi: J. Jpn. Inst. Metals 72 (2008) 35-38.
  20. R. Christenhusz and L. Reimer: Z. Angew. Phys. 23 (1967) 396-404.
  21. W.F. Libby: Anal. Chem. 19 (1947) 2-6.
  22. T. Nishida and E. Yasuda: Evaluation of Dynamic Properties of Ceramics (Ceramics no Rikigaku Tokusei Hyouka in Japanese), (Nikkan Kogyou Shimbun Ltd., Tokyo, 1986) pp. 50-51.
  23. Y. Nishi, H. Sato, H. Takei and K. Iwata: J. Mater. Res. 24 (2009) 3503-3509.
  24. H. Sato, K. Iwata, A. Tonegawa and Y. Nishi: J. Jpn. Inst. Metals 72 (2008) 526-531.
  25. H. Takei, M. Salvia, A. Vautrin, A. Tonegawa and Y. Nishi: Mater. Trans. 52 (2011) 734-739.
  26. M. Kanda and Y. Nishi: Mater. Trans. 50 (2009) 177-181.
  27. K. Oguri, Y. Irisawa, A. Tonegawa and Y. Nishi: J. Intellig. Mater. Struct. 17 (2006) 761-765.
  28. S. Takabayashi and T. Takahagi: J. Surf. Anal. 20 (2013) 25-54.
  29. Electronic Supplementary Material (ESI) for J. Mater: Chem. Royal Soc. Chem. 21 (2011) 4796-4804.
  30. Y. Yoshida, B. Van Meerbeek, Y. Nakayama, J. Snauwaert, L. Hellemans, P. Lambrechts, G. Vanherle and K. Wakasa: J. Dent. Res. 79 (2000) 709-714.
  31. L. Ren, F. Yang, C. Wang, Y. Li, H. Liu, Z. Tu, L. Zhang, Z. Liu, J. Gao and C. Xu: RSC Adv. 4 (2014) 63048-63054.
  32. S.K. Kim, S.W. Lee, C.S. Hwang, Y.-S. Min, J.Y. Won and J. Jeong: J. Electrochem. Soc. 153 (2006) 69-76.
  33. F. Beguin, M. Inagaki, R. Benoit and R. Erre: Intl. Symposium on Carbon, 2 (1990) 806-809.
  34. L. Heisey, D. Burch and J.P. Wightman: Virginia Journal of Science 42 (1991) 339-352.
  35. D.T. Clark and H.R. Thomas: J. Polym. Sci., Polym. Chem. Ed. 16 (1978) 791-820.
  36. S. Farsinezhad, P.R. Waghmare, B.D. Wiltshire, H. Sharma, S. Amiri, S.K. Mitra and K. Shankar: RSC Adv. 4 (2014) 33587-33598.
  37. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis: Carbon 46 (2008) 833-840.
  38. M. Tomizawa, C. Kubo, M. Kanda, M.C. Faudree, I. Jimbo and Y. Nishi: Mater. Trans. 57 (2016) 1759-1765.
  39. P. Stoyanov, S. Akhter and J.M. White: Surf. Interface Anal. 15 (1990) 509.
  40. A. Lippitz, E. Kemnitz, O. Bose and W.E.S. Unger: Fresenius J. Anal. Chem. 358 (1997) 175-179.
  41. B.R. Strohmeier, J.A. Rotole and P.M.A. Sherwood: Surf. Sci. Spectra 5 (1998) 18-24.
  42. P.M.A. Sherwood and S. Thomas: Anal. Chem. 64 (1992) 2488-2495.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp