Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.453-456
© 2017 The Japan Institute of Metals and Materials

Conductive Atomic Force Microscopy Measurements of Localized over Dark Current along Pyramidal Ridge Lines of Intrinsic Hydrogenated Amorphous Silicon Layer on Textured Crystalline

Hiroyuki Miwa1, Satoshi Nishida1, 2, Masato Kanematsu1, Shizuma Kuribayashi1, Htay Win1, Norimitsu Yoshida1, 2 and Shuichi Nonomura1, 2

1Environmental and Renewable Energy System Division, Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan
2Next Generation Energy Research Center, Gifu University, Gifu 501-1193, Japan

Localized over dark current of a hydrogenated amorphous silicon (a-Si:H) layer deposited on p-type crystalline silicon with a pyramidal texture was measured by conductive atomic force microscope. The current followed the ridge lines of the pyramidal a-Si:H texture, and a large over dark current corresponded to a low open circuit voltage (Voc). The current path has two possible phenomena: variable film thickness, local crystallization, and a-Si:H degradation. By modifying the textural structure, the current path of the a-Si:H layer deposited on crystalline silicon with a pyramidal texture can be reduced; thereby the possibility of preserving the Voc of hetero-junction with intrinsic thin layer solar cells could be suggested.


(Received 2016/10/07; Accepted 2016/12/12; Published 2017/02/25)

Keywords: solar cell, hetero-junction, AFM, textured surface

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama and M. Tanaka: Solar Energy Mater. Solar Cells 93 (2009) 670.
  2. T. Mishima, M. Taguchi, H. Sakata and E. Maruyama: Solar Energy Mater. Solar Cells 95 (2011) 18.
  3. Q. Wang, M.R. Page, E. Iwaniczko, Y. Xu, L. Roybal, R. Bauer, B. To, H.-C. Yuan, A. Duda, F. Hasoon, Y.F. Yan, D. Levi, D. Meier, H.M. Branz and T.H. Wang: Appl. Phys. Lett. 96 (2010) 013507.
  4. H. Fujiwara and M. Kondo: Appl. Phys. Lett. 90 (2007) 013503.
  5. M. Schaper, J. Schmidt, H. Plagwitz and R. Brendel: Prog. Photovolt. Res. Appl. 13 (2005) 381.
  6. G. Li, Y. Zhou and F. Liu: J. Non-Cryst. Solids 358 (2012) 2223.
  7. M. Edwards, S. Bowden, U. Das and M. Burrows: Solar Energy Mater. Solar Cells 92 (2008) 1373.
  8. S. Olibet, C. Monachon, A. Hessler-Wyser, E. Vallat-Sauvain, S. De Wolf, L. Fesquet, J. Damon-Lacoste, and C. Balli: 133rd Eur. Photovoltaic Sol. Energy Conference 11008, p.1140.
  9. L. Fesquet, S. Olibet, J. Damon-Lacoste, S. De Wolf, A. Hessler-Wyser, C. Monachon, and C. Ballif, Photovoltaic Specialists Conference 34th IEE11009, p.000754.
  10. A. Fejfar, M. Hývl, M. Ledinský, A. Vetushka, J. Stuchlík, J. Kočka, S. Misra, B. O'Donnell, M. Foldyna, L. Yu, and P.R. i Cabarrocas: Solar Energy Mater. Solar Cells, 119 (2013) 228.
  11. M. Ledinský, A. Fejfar, A. Vetushka, J. Stuchlík, B. Rezek and J. Kočka: Phys. Status Solidi Rapid Res. Lett. 5 (2011) 373.
  12. A. Illiberi, P. Kudlacek, A.H.M. Smets, M. Creatore and M.C.M. van de Sanden: Appl. Phys. Lett. 98 (2011) 242115.
  13. H. Muta, K. Mizuno, S. Nishida and S. Kuribayashi: Thin Solid Films 523 (2012) 41.
  14. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice Hall, New Jersey, 1982).
  15. K. Hamakawa and Y. Kuwano, Taiyo Enerugii Kogaku, Taiyodenchi (Solar Energy Engineering, Solar Cell) (Baifukan, Tokyo, 1994) p.79 [in Japanese].


© 2017 The Japan Institute of Metals and Materials
Comments to us :