Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.442-449
© 2017 The Japan Institute of Metals and Materials

Deformation Microstructure and Fracture Behavior in Creep-Exposed Alloy 617

Shigeto Yamasaki1, Masatoshi Mitsuhara1 and Hideharu Nakashima1

1Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan

The causes of the change in creep rupture ductility with the creep test temperature in Alloy 617 were investigated. The rupture ductility in the creep test was low at 700℃, whereas it was high at 800℃. Although the rupture ductility depended on the creep test temperature, creep fracture occurred due to cavity formation at the grain boundaries under all the creep conditions. In the sample crept at 800℃, subgrains developed with creep deformation. However, the crept sample at 700℃ fractured before the subgrain formation. Although the work hardening due to the creep deformation occurred at 700℃, the work hardening in the sample crept at 800℃ was small. The deformation of the grains was suppressed by the work hardening and by γ' particle dispersion strengthening at 700℃. The difference in the strength in the crystal grains that resulted from the microstructure formed during creep caused the difference in the growth of the cavities.


(Received 2016/11/14; Accepted 2016/12/09; Published 2017/02/25)

Keywords: Alloy 617, nickel-based alloys, creep, fracture mechanism, work hardening, dislocation substructure

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. W.L. Mankins, J.C. Hosier and T.H. Bassford: Metall. Trans. 5 (1974) 2579-2590.
  2. Y. Hosoi and S. Abe: Metall. Trans. A 6 (1975) 1171-1178.
  3. O.F. Kimball, G.Y. Lai and G.H. Reynolds: Metall. Trans. A 7 (1976) 1951-1952.
  4. S. Kihara, J.B. Newkirk, A. Ohtomo and Y. Saiga: Metall. Trans. A 11 (1980) 1019-1031.
  5. H. E. McCoy and J. F. King: No. ORNL/TM-9337, (Oak Ridge National Laboratory 1985), p.1 (online).
  6. R.W. Swindeman and M.J. Swindeman: Int. J. Press. Vessels Piping 85 (2008) 72-79.
  7. J. Klöwer, R.U. Husemann and M. Baderc: Proc. Eng. 55 (2013) 226-231.
  8. K. Kubushiro, K. Nomura, H. Nakagawa, Y. Ohkuma and K. Muroki: The International Conference on Power Engineering-15, (The Japan Society of Mechanical Engineers, 2015) ICOPE-15-1167.
  9. J. K. Wright, L. J. Carroll and R. N. Wright: INL/EXT-14-32966, (Idaho National Laboratory 2014), p.1 (online).
  10. W.G. Kim, I.M.W. Ekaputra, J.Y. Park, M.H. Kim and Y.W. Kim: Nucl. Eng. Des. 306 (2016) 177-185.
  11. Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker and V.K. Vasudevan: Metall. Mater. Trans., A 39 (2008) 2569-2585.
  12. M. Akbari-Garakani and M. Mehdizadeh: Mater. Des. 32 (2011) 2695-2700.
  13. D. Tytko, P. Choi, J. Klower, A. Kostka, G. Inden and D. Raabe: Acta Mater. 60 (2012) 1731-1740.
  14. R. Krishna, S.V. Hainsworth, S.P.A. Gill, A. Strang and H.V. Atkinson: Metall. Mater. Trans., A 44 (2013) 1419-1429.
  15. R. Krishna, S.V. Hainsworth, S.P.A. Gill and H.V. Atkinson: Microsc. Res. Tech. 78 (2015) 336-342.
  16. S.F. Di Martino, R.G. Faulkner, S.C. Hogg, S. Vujic and O. Tassa: Mater. Sci. Eng. A 619 (2014) 77-86.
  17. W. Ren and R. Swimdeman: J. Press. Ves. Tech. 131 (2009) 024002.
  18. G. Sundararajan: Mater. Sci. Eng. A 112 (1989) 205-214.
  19. S.I. Wright, M.M. Nowell and D.P. Field: Microsc. Microanal. 17 (2011) 316-329.
  20. S. Zaefferer and N.N. Elhami: Acta Mater. 75 (2014) 20-50.
  21. K. Kubushiro, Y. Sakakibara and T. Ohtani: J. Soc. Mater. Sci. Jpn. 64 (2015) 106-112.
  22. J. Čadek, M. Pahutová, V. Šustek and A. Dlouhý: Mater. Sci. Eng. A 238 (1997) 391-398.
  23. D.N. Seidman, E.A. Marquis and D.C. Dunand: Acta Mater. 50 (2002) 4021-4035.
  24. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito and T. Narita: J. Phys. Chem. Solids 66 (2005) 571-575.
  25. M.E. Kassner and T.A. Hayes: Int. J. Plast. 19 (2003) 1715-1748.
  26. J.R. Rice: Acta Metall. 29 (1981) 675-681.


© 2017 The Japan Institute of Metals and Materials
Comments to us :