Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.423-426
© 2017 The Japan Institute of Metals and Materials

Plasticity Improvement of Zr-Based Bulk Metallic Glasses by Adjusting Oxygen Content and Cooling Rate

Z.J. Ma1, S.B. Lei1, Lugee T. Li Yeung2, P. Wang1, Y.C. Guo1, Z. Yang1, J.P. Li1 and P.H. Gao1

1School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China
2Eontec Company Limited, DongGuan 523000, China

The poor plasticity of amorphous metal at room temperature has proved to be one of the biggest obstacles for its widespread application as structural components. In present study, the experimental samples were prepared by suction-casting and high vacuum die-casting with Zr54.6Ti13.8Cu9.3Ni5.8Be13.5Nb3 (at. %) to discuss the effect of the oxygen content and cooling rate on the plasticity of amorphous metal respectively. The results indicate that dendrite with appropriate dimension and fraction can be obtained by adjusting oxygen content so as to improve the plasticity of metallic glasses. Likewise, the appropriate cooling rate even above the critical cooling rate can also be quite effective to make the brittle metallic glasses obtain high plasticity.


(Received 2016/11/24; Accepted 2016/12/19; Published 2017/02/25)

Keywords: bulk metallic glasses, oxygen content, crystallization, cooling rate, plasticity

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. W.J. Klement, R.H. Willens and P. Duwez: Nature 187 (1960) 869-870.
  2. A. Inoue, T. Zhang and T. Masumoto: Mater. Trans., JIM 30 (1989) 965-972.
  3. A. Inoue, T. Zhang and T. Masumoto: Mater. Trans., JIM 34 (1993) 1234-1237.
  4. A. Inoue, A. Kato, T. Zhang, S.G. Kim and T. Masumoto: Mater. Trans., JIM 32 (1991) 609-616.
  5. A. Peker and W.L. Johnson: Appl. Phys. Lett. 63 (1993) 2342-2344.
  6. H.A. Bruck, T. Christman, A.J. Rosakis and W.L. Johnson: Scr. Metall. Mater. 30 (1994) 429-434.
  7. P. Gong, X. Wang, Y. Shao, N. Chen, X. Liu and K.F. Yao: Intermetallics 43 (2013) 177-181.
  8. X. Cui, F.-Q. Zu, W.-X. Jiang, L.-F. Wang and Z.-Z. Wang: J. Non-Cryst. Solids 375 (2013) 83-87.
  9. W.-H. Wang: Progress in Physics 33 (2013) 177-351.
  10. W.H. Wang, C. Dong and C.H. Shek: Mater. Sci. Eng. Rep. 44 (2004) 45-89.
  11. B.A. Sun and W.H. Wang: Prog. Mater. Sci. 74 (2015) 211-307.
  12. S.X. Liang, L.X. Yin, M.Z. Ma, R. Jing, P.F. Zhang, B.A. Wang and R.P. Liu: Mater. Sci. Eng. A 561 (2013) 13-16.
  13. W. Chen, J. Ketkaew, Z. Liu, R.M.O. Mota, K. O'Brien, C.S. Da Silva and J. Schroers: Scr. Mater. 107 (2015) 1-4.
  14. N. Hua, L. Huang, W. He, S. Pang and T. Zhang: J. Non-Cryst. Solids 376 (2013) 133-138.
  15. Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan and W.H. Wang: Science 315 (2007) 1385-1388.
  16. C.-C. Yu, J.P. Chu, C.-M. Lee and W. Diyatmika, M.H. Chang, J.-Y. Jeng and Y. Yokoyama: Mater. Sci. Eng. A 633 (2015) 69-75.
  17. R.T. Qu, Q.S. Zhang and Z.F. Zhang: Scr. Mater. 68 (2013) 845-848.
  18. Z.Q. Liu, H. Wang and T. Zhang: Intermetallics 45 (2014) 24-28.
  19. Y. Jiang and K. Qiu: Mater. Des. 65 (2015) 410-416.
  20. B.S. Li, H. Shakur Shahabi, S. Scudino, J. Eckert and J.J. Kruzic: Mater. Sci. Eng. A 646 (2015) 242-248.
  21. J.M. Park, K.R. Lim, E.S. Park, S. Hong, K.H. Park, J. Eckert and D.H. Kim: J. Alloy. Compd. 615 (2014) S113-S117.
  22. C. Jeon, C.P. Kim, H.S. Kim and S. Lee: Mater. Sci. Eng. A 587 (2013) 143-149.
  23. J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.-L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue and T.G. Nieh: Acta Materialia 60 (2012) 3226-3238.
  24. N.H. Tariq, J.I. Akhter, A. Khalid, B.A. Hasan and T. Ali: Mater. Chem. Phys. 143 (2014) 1384-1390.
  25. L. Zhang, Z.W. Zhu, A.M. Wang, H. Li, H.M. Fu, H.W. Zhang, H.F. Zhang and Z.Q. Hu: J. Alloy. Compd. 562 (2013) 205-210.
  26. S.S. Chen and I. Todd: J. Alloy. Compd. 646 (2015) 973-977.
  27. F. Farahani and R. Gholamipour: Mater. Sci. Eng. A 651 (2016) 968-975.
  28. D. Granata, E. Fishcher and J.F. Löffler: Scr. Mater. 103 (2015) 53-56.
  29. W.H. Wang: Prog. Mater. Sci. 57 (2012) 487-656.
  30. Q.-D. Zhang, L.-F. Wang, Y. Zhao, Y. Jiang and F.-Q. Zu: Mater. Lett. 164 (2016) 348-352.
  31. Z.J. Ma, Y.C. Guo, L.T.L. Yeung, P.H. Gao, Z. Yang and X.R. Zeng: J. Alloy. Compd. 648 (2015) 18-21.
  32. J.-L. Cheng, G. Chen, Z.-W. Zhang, Z.-Z. Wang, Z.-Y. Wang and X.-Q. Li: Intermetallics 49 (2014) 149-153.
  33. D.J. Ha, C.P. Kim and S. Lee: Mater. Sci. Eng. A 552 (2012) 404-409.
  34. J.W. Qiao, P.K. Liaw and Y. Zhang: Scr. Mater. 64 (2011) 462-465.
  35. C. Jeon, C.P. Kim, H. Kim and S. Lee: Mater. Sci. Eng. A 587 (2013) 143-149.
  36. D. Granata, E. Fischer, V. Wessels and J.F. Löffler: Acta Mater. 71 (2014) 145-152.
  37. S.V. Madge, T. Wada, D.V. Louzguine-Luzgin, A.L. Greer and A. Inoue: Scr. Mater. 61 (2009) 540-543.
  38. Z.H. Han, L. He, Y.L. Hou, J. Feng and J. Sun: Intermetallics 17 (2009) 553-561.
  39. N. Van Steenberge, A. Concustell, J. Sort, J. Das, N. Mattern, A. Gebert, S. Suriñach, J. Eckert and M.D. Baró: Mater. Sci. Eng. A 491 (2008) 124-130.
  40. H.W. Xie, Y.C. Li, D.K. Yang, P. Hodgson and C. Wen: J. Alloy. Compd. 475 (2009) 501-505.
  41. H.-J. Jun, K.S. Lee, C.P. Kim and Y.W. Chang: Intermetallics 20 (2012) 47-54.
  42. S.S. Chen, H.R. Zhang and I. Todd: Scr. Mater. 72-73 (2014) 47-50.
  43. P. Gargarella, S. Pauly, M. Samadi Khosshkhoo, U. Kühn and J. Eckert: Acta Mater. 65 (2014) 259-269.


© 2017 The Japan Institute of Metals and Materials
Comments to us :