Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.420-422
© 2017 The Japan Institute of Metals and Materials

Effect of Cooling Rate on the Microstructure of Colloidal Glass

Yongzhe Wang1, Lidan Qu2, Hongge Li1, Hao Zhang1, Yilin Wang1 and Yunzhuo Lu1

1School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, People's Republic of China
2Handling Machinery Manufacturing Deparment, Dalian Huarui Heavy Industry Group Co., Ltd., Dalian 116013, People's Republic of China

The cooling rate with which the liquid is cooled has tremendous impact on the macroscopic properties of amorphous solids, but little information on the underlying mechanism for this dependence is available, mainly due to the lack of clear characterization on the microstructural variation induced by cooling rate. We built a colloidal glass to obtain its direct three-dimensional configuration by using laser scanning confocal microscopy and investigate the effect of cooling rate on microstructure. By quantifying coordination numbers and bond-angle distribution, we give evidence that the icosahedral-like structure is the most frequent local structure and more favored by the lower cooling rate.


(Received 2016/11/14; Accepted 2016/12/14; Published 2017/02/25)

Keywords: amorphous materials, colloidal glass, cooling rate, microstructure

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. S. Torquato: Nature 405 (2000) 521-523.
  2. P.G. Debenedetti and F.H. Stillinger: Nature 410 (2001) 259-267.
  3. D. Granata, E. Fischer, V. Wessels and J.F. Loffler: Acta Mater. 71 (2014) 145-152.
  4. V. Van Hoang: Physica B 456 (2015) 50-56.
  5. K. Vollmayr, W. Kob and K. Binder: Phys. Rev. B 54 (1996) 15808-15827.
  6. J.Q. Toledo-MarĂ­n, I.P. Castillo and G.G. Naumis: Physica A 451 (2016) 227-236.
  7. Y.Z. Lu, X. Lu, Z.X. Qin and J. Shen: J. Non-Cryst. Solids 420 (2015) 34-37.
  8. R.S. Maurya and T. Laha: J. Mater. Sci. Technol. 31 (2015) 1118-1124.
  9. Z.R. Wang, F. Wang, Y. Peng, Z.Y. Zheng and Y.L. Han: Science 338 (2012) 87-90.
  10. P. Schall, I. Cohen, D.A. Weitz and F. Spaepen: Nature 440 (2006) 319-323.
  11. Y.Z. Lu, M.L. Li, A. Rahman, J. Shen, X. Lu, Z.X. Qin and Z.H. Zhang: Scr. Mater. 90-91 (2014) 21-24.
  12. E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield and D.A. Weitz: Science 287 (2000) 627-631.
  13. M. Mooney: J. Colloid Sci. 6 (1951) 162-170.
  14. C.A. Angell: Science 267 (1995) 1924-1935.
  15. T. Kawasaki, T. Araki and H. Tanaka: Phys. Rev. Lett. 99 (2007) 215701.
  16. V.J. Anderson and H.N. Lekkerkerker: Nature 416 (2002) 811-815.
  17. A.V. Evteev, A.T. Kosilov, E.V. Levchenko and O.B. Logachev: J. Exp. Theor. Phys. 101 (2005) 521-527.
  18. J. Buchholz, W. Paul, F. Varnik and K. Binder: J. Chem. Phys. 117 (2002) 7364-7372.
  19. P. Sen, O. Gulseren, T. Yildirim, I.P. Batra and S. Ciraci: Phys. Rev. B 65 (2002) 235433.
  20. H.W. Sheng, Y.Q. Cheng, P.L. Lee, S.D. Shastri and E. Ma: Acta Mater. 56 (2008) 6264-6272.


© 2017 The Japan Institute of Metals and Materials
Comments to us :