Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.390-394
© 2016 The Japan Institute of Metals and Materials

Electrodeposition of Titanium in a Water-Soluble KF-KCl Molten Salt

Yutaro Norikawa1, Kouji Yasuda2, 3 and Toshiyuki Nohira1

1Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
2Agency for Health, Safety and Environment, Kyoto University, Kyoto 606-8501, Japan
3Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan

A new method of electrodeposition of Ti using a water-soluble KF-KCl molten salt electrolyte has been proposed. The electrochemical behaviors of Ti(III) ions in a KF-KCl molten salt to which 0.1 mol% K2TiF6 and an excess amount of sponge Ti were added have been investigated by cyclic voltammetry at 923 K. Anodic currents corresponding to the oxidation of Ti(III) ions were observed from 1.5 V (vs. K+/K) at a glass-like carbon rod electrode. In the negative potential region, cathodic currents were seen from 0.3 V, indicating the deposition of Ti metal from Ti(III) ions. When a nickel flag electrode was used, cathodic currents due to the formation of Ti-Ni alloys were observed, in addition to the current of deposition of Ti metal. The analyses of the electrodeposits by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffractometry confirmed that dense and smooth films of Ti metal with 20 μm thickness were obtained at current densities of 2.5 × 10−2-1.0 × 10−1 Acm−2.


(Received 2016/08/30; Accepted 2016/11/14; Published 2017/02/25)

Keywords: titanium, molten salt, electrodeposition, fluoride-chloride

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. G.M. Haaberg, W. Rolland, A. Sterten and J. Thonstad: J. Appl. Electrochem. 23 (1993) 217-224.
  2. X. Ning, H. Asheim, H. Ren, S. Jiao and H. Zhu: Metall. Mater. Trans., B 42 (2011) 1181-1187.
  3. M.H. Kang, J. Song, H. Zhu and S. Jiao: Metall. Mater. Trans., B 46 (2015) 162-168.
  4. Y. Song, S. Jiao, L. Hu and Z. Guo: Metall. Mater. Trans., B 47 (2016) 804-810.
  5. T. Uda, T.H. Okabe, Y. Waseda and Y. Awakura: Sci. Technol. Adv. Mater. 7 (2006) 490-495.
  6. J. de Lepinay, J. Bouteillon, S. Traore, D. Renaud and M.J. Barbier: J. Appl. Electrochem. 17 (1987) 294-302.
  7. A. Robin, J.D. Lepinay and M.J. Barbier: J. Electroanal. Chem. 230 (1987) 125-141.
  8. A. Robin: Mater. Lett. 34 (1998) 196-201.
  9. A. Robin and R.B. Ribeiro: J. Appl. Electrochem. 30 (2000) 239-246.
  10. J. O'M. Bockris, G.J. Hills, I.A. Menzies and L. Young: Nature 178 (1956) 654.
  11. F.R. Clayton, G. Mamantov and D.L. Manning: J. Electrochem. Soc. 120 (1973) 1193-1198.
  12. J. de Lepinay and P. Paillere: Electrochim. Acta 29 (1984) 1243-1250.
  13. A. Girginov, T.Z. Tzvetkoff and M. Bojinov: J. Appl. Electrochem. 25 (1995) 993-1003.
  14. D. Wei, T. Tada and T. Oki: ISIJ Int. 33 (1993) 1016-1022.
  15. D. Wei, M. Okido and T. Oki: J. Appl. Electrochem. 24 (1994) 923-929.
  16. V.V. Malyshev and D.B. Shakhnin: Mater. Sci. 50 (2014) 80-91.
  17. J. Song, Q. Wang, X. Zhu, J. Hou, S. Jiao and H. Zhu: Mater. Trans. 55 (2014) 1299-1303.
  18. C. Guang-Sen, M. Okido and T. Oki: J. Appl. Electrochem. 18 (1988) 80-85.
  19. R. Kubo, S. Nagakura, H. Iguchi and H. Ezawa: Rikagaku Jiten, 4th Edition, Iwanami Shoten, Tokyo (1987).
  20. L. P. Cook and H. F. McMurdie: Phase Diagrams for Ceramists vol. VII, The American Ceramic Society Inc., Ohio (1989) 509.
  21. K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara and T. Homma: J. Electrochem. Soc. 162 (2015) D444-D448.
  22. M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.L. Frurlp, R.A. Macdonald and A.N. Syverud: J. Phys. Chem. Ref. Data 14 Suppl. 1 (1985) 754.
  23. H. Okamoto: J. Phase Equilib. 36 (2015) 390-401.
  24. K. Yasuda, K. Maeda, T. Nohira, R. Hagiwara and T. Homma: J. Electrochem. Soc. 163 (2016) D95-D99.
  25. K.S. Willson and J.A. Rogers: Tech. Proc. Amer. Electroplaters Soc. 51 (1964) 92-95.


© 2016 The Japan Institute of Metals and Materials
Comments to us :