Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.383-389
© 2017 The Japan Institute of Metals and Materials

Molten Salt Synthesis of Different Ionic Radii Metallic Compounds Doped Lithium Titanate Used in Li-Ion Battery Anodes

Qingjun Guo1, Qiang Wang1, Gang Chen1, Miao Shen2 and Bing Li1

1East China University of Science and Technology, 130Meilong Road, Shanghai 200237, P.R. China
2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P.R. China

In order to systematically characterize the effects of ion doping on Li4Ti5O12 (LTO) through the molten salt method, different metallic compounds with varying ionic radii doped into LTO were investigated. The results show that doped ions (Al3+, Ni2+, Fe2+, Fe3+ and F) with similar ionic radius as Li+, Ti4+ or O2− ions can enter into LTO, which leads to smaller particle size than pure LTO, therefore, increasing the specific surface area and shortening Li+ transfer path of LTO. However, La3+ with a much larger ionic radius cannot enter into LTO. Ion doping can enhance the intrinsic conductivity of LTO, thus improving the electrochemical performance of LTO. As the ionic radii of Fe2+ and Fe3+ are the closest to those of Li+ and Ti4+, Fe3O4 doped LTO exhibits the best electrochemical performance, an excellent first discharge capacity of 269.3 mAh·g−1 at the 0.15 C, good high-rate capability (123.4 mAh·g−1 at 10 C); even after 300 discharge/charge cycles, the discharge capacity is 141.1 mAh·g−1, gives an excellent cycle performance with 12.4% loss of capacity at 1 C rate. Due to these factors, Fe3O4 is the most suitable metallic compound doped in LTO via molten salt method.


(Received 2016/08/30; Accepted 2016/12/05; Published 2017/02/25)

Keywords: molten salt, metallic compound, lithium titanate, lithium-ion battery

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. Guo, W. Zuo, Y. Cai, S. Chen, S. Zhang and J. Liu: J. Mater. Chem. A 3 (2015) 4938-4944.
  2. L. Wen, Z. Wu, H. Luo, R. Song and F. Li: J. Electrochem. Soc. 162 (2015) A3038-A3044.
  3. L. Wang, Y. Zhang, M.E. Scofield, S. Yue, C. McBean, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi and S.S. Wong: ChemSusChem 8 (2015) 3304-3313.
  4. W. Li, X. Li, M. Chen, Z. Xie, J. Zhang, S. Dong and M. Qu: Electrochim. Acta 139 (2014) 104-110.
  5. L. Zhao, Y.S. Hu, H. Li, Z. Wang and L. Chen: Adv. Mater. 23 (2011) 1385-1388.
  6. Y.B. He, B. Li, M. Liu, C. Zhang, W. Lv, C. Yang, J. Li, H. Du, B. Zhang, Q.H. Yang, J.K. Kim and F. Kang: Sci. Rep. 2 (2012) 913.
  7. K. Wu, J. Yang, Y. Liu, Y. Zhang, C. Wang, J. Xu, F. Ning and D. Wang: J. Power Sources 237 (2013) 285-290.
  8. B. Zhao, R. Ran, M.L. Liu and Z.P. Shao: Mater. Sci. Eng. Rep. 98 (2015) 1-71.
  9. L. Wang, X. He, J. Li, W. Sun, J. Gao, J. Guo and C. Jiang: Angew. Chem. Int. Ed. Engl. 51 (2012) 9034-9037.
  10. M. Lao, X. Lin, P. Li, L. Shao, K. Wu, M. Shui, N. Long, Y. Ren and J. Shu: Ceram. Int. 41 (2015) 2900-2907.
  11. Q. Guo, S. Li, H. Wang, Y. Gao and B. Li: RSC Adv. 4 (2014) 60327-60333.
  12. Q. Guo, Q. Wang, G. Chen, H. Xu, J. Wu and B. Li: ECS Trans. 72 (2016) 11-23.
  13. V.D. Nithya, R. Kalai Selvan, K. Vediappan, S. Sharmila and C.W. Lee: Appl. Surf. Sci. 261 (2012) 515-519.
  14. T.-F. Yi, S.-Y. Yang, X.-Y. Li, J.-H. Yao, Y.-R. Zhu and R.-S. Zhu: J. Power Sources 246 (2014) 505-511.
  15. D. Wang, C. Zhang, Y. Zhang, J. Wang and D. He: Ceram. Int. 39 (2013) 5145-5149.
  16. M. Ji, Y. Xu, Z. Zhao, H. Zhang, D. Liu, C. Zhao, X. Qian and C. Zhao: J. Power Sources 263 (2014) 296-303.
  17. Z. Wang, Z. Wang, W. Peng, H. Guo and X. Li: Ceram. Int. 40 (2014) 10053-10059.
  18. Y.Q. Wang, L. Gu, Y.G. Guo, H. Li, X.Q. He, S. Tsukimoto, Y. Ikuhara and L.J. Wan: J. Am. Chem. Soc. 134 (2012) 7874-7879.
  19. S. Zheng, Y. Xu, C. Zhao, H. Liu, X. Qian and J. Wang: Mater. Lett. 68 (2012) 32-35.
  20. J. Liu, W. Liu, S. Ji, Y. Wan, H. Yin and Y. Zhou: Eur. J. Inorg. Chem. 2014 (2014) 2073-2079.
  21. M. Hu, Y. Jiang and M. Yan: J. Alloy. Compd. 603 (2014) 202-206.
  22. J. Wang, Z. Yang, W. Li, X. Zhong, L. Gu and Y. Yu: J. Power Sources 266 (2014) 323-331.
  23. M. Krajewski, M. Michalska, B. Hamankiewicz, D. Ziolkowska, K.P. Korona, J.B. Jasinski, M. Kaminska, L. Lipinska and A. Czerwinski: J. Power Sources 245 (2014) 764-771.
  24. Q. Zhang, Y. Liu, H. Lu, D. Tang, C. Ouyang and L. Zhang: Electrochim. Acta 189 (2016) 147-157.
  25. W. Li, H. Wang, M. Chen, J. Gao, X. Li, W. Ge, M. Qu, A. Wei, L. Zhang and Z. Liu: Electrochim. Acta 188 (2016) 499-511.
  26. Z. Ding, L. Zhao, L. Suo, Y. Jiao, S. Meng, Y.S. Hu, Z. Wang and L. Chen: Phys. Chem. Chem. Phys. 13 (2011) 15127-33.
  27. J. Chen, L. Yang, S. Fang and Y. Tang: Electrochim. Acta 55 (2010) 6596-6600.
  28. T. Kimijima, K. Kanie, Y. Tsujikawa, M. Nakaya, N. Zettsu, K. Teshima and A. Muramatsu: Ceram. Int. 41 (2015) 10988-10994.
  29. X. Li, H. Hu, S. Huang, G. Yu, L. Gao, H. Liu and Y. Yu: Electrochim. Acta 112 (2013) 356-363.
  30. W. Yao, W. Zhuang, X. Ji, J. Chen, X. Lu and C. Wang: Mater. Res. Bull. 75 (2016) 204-210.
  31. T. Ogihara, M. Yamada, A. Fujita, S. Akao and K. Myoujin: Mater. Res. Bull. 46 (2011) 796-800.
  32. T.-F. Yi, S.-Y. Yang, M. Tao, Y. Xie, Y.-R. Zhu and R.-S. Zhu: Electrochim. Acta 134 (2014) 377-383.
  33. T.-F. Yi, Y. Xie, Q. Wu, H. Liu, L. Jiang, M. Ye and R. Zhu: J. Power Sources 214 (2012) 220-226.
  34. S. Huang, Z. Wen, Z. Gu and X. Zhu: Electrochim. Acta 50 (2005) 4057-4062.
  35. J. Haetge, P. Hartmann, K. Brezesinski, J. Janek and T. Brezesinski: Chem. Mater. 23 (2011) 4384-4393.
  36. M.R. Jo, G.H. Lee and Y.M. Kang: ACS Appl. Mater. Interfaces 7 (2015) 27934-27939.
  37. M.R. Jo, J. Jung, G.-H. Lee, Y. Kim, K. Song, J. Yang, J.S. Chae, K.C. Roh, Y.-I. Kim, W.-S. Yoon and Y.-M. Kang: Nano Energy 19 (2016) 246-256.


© 2017 The Japan Institute of Metals and Materials
Comments to us :