Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.377-382
© 2017 The Japan Institute of Metals and Materials

Electrochemical and Chemical Behaviors of Titanium in AlCl3-BMIC Melt

Cunying Xu1, 2, Yawei Liu1, Yixin Hua1, 2, Jian Li1, 2 and Qibo Zhang1, 2

1Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
2State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization, Kunming, 650093, P. R. China

The electrochemical and chemical behaviors of titanium were examined in aluminum chloride-1-butyl-3-methylimidazolium chloride (AlCl3-BMIC) ionic liquid. The reduction of Ti(IV) in AlCl3-BMIC occurs in three consecutive steps: Ti(IV) → Ti(III) → Ti(II) → Ti, and Ti(III) ion can quickly react with Cl anion to form sparingly soluble TiCl3. However, No elemental titanium can be obtained in either acidic or basic AlCl3-BMIC melt. Metal titanium can be oxidized to Ti(II) by Ti(IV) in AlCl3-BMIC melt. In addition, the anodic oxidation rate of titanium obviously increases in the presence of Ti(IV) and Ti(III) ions, suggesting that the anodic dissolution of titanium involves chemical dissolution. These results indicate that it is difficult to nucleate or stabilize pure titanium in ionic liquid, which makes pure titanium deposition quite difficult.


(Received 2016/08/31; Accepted 2016/11/14; Published 2017/02/25)

Keywords: titanium, electrochemistry, chemical behaviors, ionic liquids

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. C.G. Sen and T. Oki: Electrochim. Acta 23 (1987) 1637-1642.
  2. C. Guang-Sen and T. Oki: J. Appl. Electrochem. 17 (1987) 849-856.
  3. A. Lisowska and S. Biallozor: Electrochim. Acta 27 (1982) 105-110.
  4. R.T. Carlin and R.A. Osteryoung: J. Electrochem. Soc. 136 (1989) 1409-1415.
  5. G. Mamantov, A. I. Popov, Chemistry of Nonaqueous Solutions: Current Progress, VCH, Weinheim, 1994
  6. M. Zhang, V. Kamavaram and R.G. Reddy: JOM 55 (2003) 54-57.
  7. S.Z.E. Abedin and F. Endres: Phys. Chem. Chem. Phys. 7 (2006) 58-61.
  8. I. Mukhopadhyay and W. Freyland: Langmuir 19 (2003) 1951-1953.
  9. I. Mukhopadhyay, C.L. Aravinda, D. Borissov and W. Freyland: Electrochim. Acta 50 (2005) 1275-1281.
  10. F. Endres, S. Zein El Abedin, A.Y. Saad, E.M. Moustafa, N. Borissenko, W.E. Price, G.G. Wallace, D.R. MacFarlane, P.J. Newmanc and A. Bundd: Phys. Chem. Chem. Phys. 10 (2008) 2189-2199.
  11. T. Tsuda, C.L. Hussey and G.R. Stafford: J. Electrochem. Soc. 151 (2004) C379-C384.
  12. G.R. Stafford, T. Tsuda and C.L. Hussey: J. Min. Met. 39 (2003) 23-42.
  13. T. Tsuda, S. Arimoto, S. Kuwabata and C.L. Hussey: J. Electrochem. Soc. 155 (2008) D256-D262.
  14. C.L. Aravinda, I. Mukhopadhyay and W. Freyland: Phys. Chem. Chem. Phys. 6 (2004) 5225-5231.
  15. D. Pradhan and R.G. Reddy: Electrochim. Acta 54 (2009) 1874-1880.
  16. D. Pradhan, R.G. Reddy and A. Lahiri: Metallurgical and Materials Transactions 40 (2009) 114-122.
  17. Q.F. Pei, Y.X. Hua, C.Y. Xu, Q.B. Zhang, Y. Li, J.J. Ru and K. Gong: Acta Phys. Chim. Sin. 29 (2013) 946-952.
  18. G.R. Stafford: J. Electrochem. Soc. 141 (1994) 945-953.
  19. C.Y. Xu, Q. Wu, Y.X. Hua and J. Li: J. Solid State Electrochem. 18 (2014) 2149-2155.
  20. R.S. Nicholson: Anal. Chem. 38 (1966) 1406-1406.
  21. J. Thonstad: High Temp. Mater. Process. 9 (1990) 135-146.
  22. J. Uchida, H. Seto and A. Shibuya: J. Surf. Finishing Soc. of Jpn. (HyomenGijutsu) 46 (1995) 1167-1172.
  23. K.W. Fung and G. Mamantov: J. Electroanal. Chem. 35 (1972) 27-34.
  24. A.A. Fannin Jr., D.A. Floreani, L.A. King, J.S. Landers, B.J. Piersma, D.J. Stech, R.L. Vaughn, J.S. Wilkes and L.J. Williams: J. Phys. Chem. 88 (1984) 2614-2621.


© 2017 The Japan Institute of Metals and Materials
Comments to us :