Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.371-376
© 2017 The Japan Institute of Metals and Materials

Electrolytic reduction of V3S4 in molten CaCl2

Takahiro Matsuzaki1, Shungo Natsui1, Tatsuya Kikuchi1 and Ryosuke O. Suzuki1

1Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Metallic vanadium was successfully produced starting from vanadium sulfide by applying electrolysis in molten CaCl2. Vanadium sulfide filled in a cathodic Ti basket and a graphite anode were immersed in the melt of CaCl2-CaS at 1173 K in Ar, and the electrolysis was conducted at a cell voltage of 3.0 V. Sulfide electrolysis did not form carbon deposit and was free from carbon contamination, while carbon powder was formed on the cathode in the oxide electrolysis using the melt of CaCl2-CaO. When the CaS content in the molten CaCl2 increased, electrolysis current increased resulting in fast smelting while the oxygen and sulfur contents in metallic vanadium increased. Oxygen and sulfur contents as low as 3390 ppm and 210 ppm, respectively, were achieved by supplying about four times more electrical charge than stoichiometry.


(Received 2016/09/02; Accepted 2016/12/02; Published 2017/02/25)

Keywords: molten salt electrolysis, vanadium sulfide, metallic vanadium, calcium chloride

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. R.R. Moskalyk and A.M. Alfantazi: Miner. Eng. 16 (2003) 793-805.
  2. M. Tsukahara, K. Takahashi, A. Isomura and T. Sakai: J. Alloy. Compd. 265 (1998) 257-263.
  3. T.K. Mukherjee and C.K. Gupta: J. Less Common Met. 27 (1972) 251-254.
  4. R.O. Suzuki, K. Tatemoto and H. Kitagawa: J. Alloy. Compd. 385 (2004) 173-180.
  5. W. Weng, M. Wang, X. Gong, Z. Wang, D. Wang and Z. Guo: Int. J. Refract. Met. Hard Mater. 55 (2016) 47-53.
  6. A. Miyauchi and T.H. Okabe: Mater. Trans. 51 (2010) 1102-1108.
  7. R.O. Suzuki and S. Fukui: Mater. Trans. 45 (2004) 1665-1671.
  8. H. Sakai, Y. Oka and R.O. Suzuki: J. Jpn. Inst. Met. Mater. 72 (2008) 921-927.
  9. Y. Oka and R.O. Suzuki: ECS Trans. 16 (2008) 265-270.
  10. H. Wriedt, Phase Diagrams of Binary Vanadium Alloys, J.F.Smith, ed., ASM International, Metals Park, OH (1989) pp. 175-208.
  11. J.F. Smith, Phase Diagrams of Binary Vanadium Alloys, J.F.Smith, ed., ASM International, Metals Park, OH (1989) pp. 244-251.
  12. M. Tan, R. He, Y. Yuan, Z. Wang and X. Jin: Electrochim. Acta 213 (2016) 148-154.
  13. H. Gao, M. Tan, L. Rong, Z. Wang, J. Peng, X. Jin and G.Z. Chen: Phys. Chem. Chem. Phys. 16 (2014) 19514-19521.
  14. T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng and G.Z. Chen: Electrochem. Commun. 13 (2011) 1492-1495.
  15. G.Z. Chen and D.J. Fray: J. Appl. Electrochem. 31 (2001) 155-164.
  16. A. Rouine, et al., HSC version 6.12 (2007).
  17. I. Kawada, M. Nakano-Onoda, M. Ishii and M. Saeki: J. Solid State Chem. 15 (1975) 246-252.
  18. M. Wakihara, T. Uchida and M. Taniguchi: Metall. Trans. B 9 (1978) 29-32.
  19. M. Nakano-Onoda and M. Nakahira: J. Solid State Chem. 30 (1979) 283-292.
  20. M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi and E. Vahidi: Hydrometallurgy. 102 (2010) 14-21.
  21. F. Groenvold, H. Haraldsen, B. Pedersen and T. Tufte: Rev. Chim. Miner. 6 (1969) 215.
  22. K. Post and R.G. Robins: Electrochim. Acta 21 (1976) 401-405.
  23. K. Le Van, H. Groult, F. Lantelme, M. Dubois, D. Avignant, A. Tressaud, S. Komaba, N. Kumagai and S. Sigrist: Electrochim. Acta 54 (2009) 4566-4573.


© 2017 The Japan Institute of Metals and Materials
Comments to us :