Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.361-366
© 2016 The Japan Institute of Metals and Materials

Reduction of Titanium Dioxide to Metallic Titanium by Nitridization and Thermal Decomposition

Ichiro Seki1, 2 and Shin-ichi Yamaura1, 3

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2NETZSCH Japan, Yokohama 221-0022, Japan
3Polytechnic University, Tokyo 187-0035, Japan

We report a novel process to produce metallic titanium from titanium dioxide—the raw material typically used in the conventional production of titanium metal—via a titanium nitride (TiN) intermediate. TiN is more easily reacted than titanium oxides such as titanium monoxide and titanium dioxide, and shows thermodynamic reactivity equivalent to titanium tetrachloride (TiCl4), which is used industrially as an intermediate in the conventional metallic titanium manufacturing process. The thermal decomposition temperature of TiN (~3500 K), determined from a thermodynamic database, is also significantly lower than those of the oxides (~5300 K) and TiCl4 (~6200 K); thus, it is suitable for use in the available temperature range of an electric arc furnace (~4000 K). Here, we demonstrate the use of TiN as an intermediate for the manufacture of metallic titanium by thermolysis using the arc melting method.


(Received 2016/07/12; Accepted 2016/09/14; Published 2017/02/25)

Keywords: thermolysis, titanium nitride, Gibbs free energy, nitrogen reaction, titanium

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. The Japan Titanium Society, Titanium World (2013) 29-32.
  2. W. Kroll: Trans. Electrochem. Soc. 78 (1940) 35-47.
  3. G.Z. Chen, D.J. Fray and T.W. Farthing: Nature 407 (2000) 361-364.
  4. R.O. Suzuki, K. Teranuma and K. Ono: Metall. Mater. Trans. 34 (2003) 287-295.
  5. R.O. Suzuki and S. Fukui: Mater. Trans. 45 (2004) 1665-1671.
  6. O. Takeda and T.H. Okabe: Mater. Trans. 47 (2006) 1145-1154.
  7. H. Zheng, H. Ito and T.H. Okabe: Mater. Trans. 48 (2007) 2244-2251.
  8. T. Haruna, M. Yamamoto and T. Shibata: J. Jpn. Inst. Metals 63 (1999) 1327-1331.
  9. Y. Yokoyama, A. Kobayashi, K. Fukaura and A. Inoue: Mater. Trans. 43 (2002) 571-574.
  10. M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, A.N. Syverud: JANAF Thermochemical Tables, third ed., (American Institute of Physics Inc., New York, 1985) pp. 626, 628, 878, 1542, 1659, 1681.
  11. G.V. White, K.J.D. Mackenzie and J.H. Johnston: J. Mater. Sci. 27 (1992) 4287-4293.
  12. C. Vahlas, B.D. Ladouce, P.Y. Chevalier, C. Bernard and L. Vanden Bulcke: Thermochim. Acta 180 (1991) 23-37.


© 2016 The Japan Institute of Metals and Materials
Comments to us :