Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.355-360
© 2016 The Japan Institute of Metals and Materials

Hydrogen Assisted Magnesiothermic Reduction (HAMR) of Commercial TiO2 to Produce Titanium Powder with Controlled Morphology and Particle Size

Yang Xia1, Z. Zak Fang1, Ying Zhang1, Hyrum Lefler1, Tuoyang Zhang1, Pei Sun1 and Zhe Huang1

1Department of Metallurgical Engineering, the University of Utah, Salt Lake City, Utah 84112, USA

A two-step thermochemical reduction was developed to remove oxygen from commercial titanium dioxide, TiO2, producing metallic titanium powder. The first step was to remove >95% of the oxygen by Mg reduction in a hydrogen atmosphere, followed by a de-oxygenation step. The goal is to produce Ti powder that meets the standard specifications for titanium. Several ancillary steps including granulation and heat treatment were introduced to modify the powder morphology, particle size and powder density to make the powder suitable for a range of applications. Detailed compositional analysis indicated that the final product meets the ASTM B299 for general-purpose titanium sponge. The powder can be irregularly shaped or spherical with different granulation treatments.

[doi:10.2320/matertrans.MK201628]

(Received 2016/09/07; Accepted 2016/10/17; Published 2017/02/25)

Keywords: magnesiothermic reduction, hydrogen, titanium powder, titanium oxide

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. D. Fray: Int. Mater. Rev. 53 (2008) 317-325.
  2. Y. Xia, Z.Z. Fang, T.Y. Zhang, Y. Zhang, P. Sun, Z. Huang: The 13th World Conference on Titanium. eds V. Venkatesh, A. L. Pilchak, J. E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H.L. Fraser, M. A. Imam, Y. Kosaka, H. J. Rack, A. Chatterjee and A. Woodfield, John Wiley & Sons, Inc., Hoboken, NJ, USA. 2015. doi: .
  3. D. S. van Vuuren: 7th International Heavy Minerals Conference ‘What next’, The Southern African Institute of Mining and Metallurgy, (2009) 1-7.
  4. D.S. Van Vuuren: J. S. Afr. Inst. Min. Metall. 109 (2009) 455-461.
  5. M. Qian, and F.H. Froes, Titanium Powder Metallurgy: Science, Technology and Applications, Preface. Elsevier Inc. 2015.
  6. S. Seong, O. Younossi, and B.W. Goldsmith: Titanium: industrial base, price trends, and technology initiatives. 2009: Rand Corporation.
  7. I. Mellor, L. Grainger, K. Rao, J. Deane, M. Conti, G. Doughty, D. Vaughan: Titanium Powder Metallurgy: Science, Technology and Applications. 2015, Elsevier Inc. pp. 51-67.
  8. S.J. Oosthuizen: J. S. Afr. Inst. Min. Metall. 111 (2011) 199-202.
  9. K. Rao, M. Bertolini, I. Mellor, J. Collins, J. Deane, L. Grainger, M. Conti: 12th World Conference on Titanium, Ti 2011. 2012. Beijing. pp. 181-184
  10. C. Schwandt, G.R. Doughty and D.J. Fray: Key Eng. Mater. 436 (2010) 13-25.
  11. W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, J.O. Kiggans, T.R. Muth, C.A. Blue, J.C. Williams and K. Akhtar: J. Alloy. Compd. 541 (2012) 440-447.
  12. W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller and K. Akhtar: Powder Technol. 214 (2011) 194-199.
  13. Y. Yamamoto, J.O. Kiggans, M.B. Clark, S.D. Nunn, A.S. Sabau and W.H. Peter: Key Eng. Mater. 436 (2010) 103-111.
  14. C. Doblin, A. Beruldsen, Ti 2011-Proceedings of the 12th World Conference on Titanium, 3 (2012) pp. 1735-1739.
  15. C. Doblin, A. Chryss and A. Monch: Key Eng. Mater. 520 (2012) 95-100.
  16. C. Doblin, D. Freeman and M. Richards: Key Eng. Mater. 551 (2013) 37-43.
  17. D.S. van Vuuren: Direct titanium powder production by metallothermic processes, in Titanium Powder Metallurgy: Science, Technology and Applications. 2015. p. 69-93.
  18. D.S. van Vuuren, S.J. Oosthuizen and M.D. Heydenrych: J. S. Afr. Inst. Min. Metall. 111 (2011) 141-148.
  19. D.S. van Vuuren, S.J. Oosthuizen and J.J. Swanepoel: Key Eng. Mater. 551 (2013) 16-24.
  20. J.C. Withers and R.O. Loutfy, Thermal and electrochemical process for metal production. 2008, US patent US20070029208 A1
  21. Q. Wang, J. Song, J. Wu, S. Jiao, J. Hou and H. Zhu: Phys. Chem. Chem. Phys. 16 (2014) 8086-8091.
  22. Z. Wang, J. Li, Y. Hua, Z. Zhang, Y. Zhang and P. Ke: Chinese J Rare Metal. 38 (2014) 915-927.
  23. Z.Z. Fang, S. Middlemas, J. Guo and P. Fan: J. Am. Chem. Soc. 135 (2013) 18248-18251.
  24. Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free and J. Gu: Chem. Eng. J. 286 (2016) 517-527.
  25. H. Conrad: Prog. Mater. Sci. 26 (1981) 131.
  26. H.H. Nersisyan, H.I. Won, C.W. Won, A. Jo and J.H. Kim: Chem. Eng. J. 235 (2014) 67-74.
  27. F.H. Froes: JOM 50 (1998) 41-43.
  28. R.O. Suzuki, and K. Ono. OS process - Thermochemical approach to reduce titanium oxide in the molten CaCl2. in Yazawa International Symposium: Metallurgical and Materials Processing: Principles and Techologies; Aqueous and Electrochemical Processing. 2003.
  29. T.H. Okabe, T. Uda, E. Kasai, Y. Waseda: Proceedings of the TMS Fall Meeting 1997. pp. 243-258.
  30. T.H. Okabe, T. Oda and Y. Mitsuda: J. Alloy. Compd. 364 (2004) 156-163.
  31. R.O. Suzuki and S. Inoue: Metall. Mater. Trans., B 34 (2003) 277-285.
  32. Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B.V. Devener, M. Free, H. Lefler and S. Zheng: Chem. Eng. J. 308 (2017) 299-310.
  33. Z. Z. Fang, Y. Xia, P. Sun, and Y. Zhang U.S. Patent Application No. 14/950,346. 2015.
  34. Y. Zhang, Z.Z. Fang, P. Sun, T. Zhang, Y. Xia, C. Zhou and Z. Huang: J Am Chem Soc. 138 (2016) 6916-6919.
  35. P. Sun, Z.Z. Fang, Y. Xia, Y. Zhang and C. Zhou: Powder Technol. 301 (2016) 331-335.
  36. C.G. McCracken, C. Motchenbacher and D.P. Barbis: Int. J. Powder Metallurg 46 (2010) 19-26.


[JIM HOME] [JOURNAL ARCHIVES]

© 2016 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp