Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.341-349
© 2016 The Japan Institute of Metals and Materials

Reduction of CaTiO3 in Molten CaCl2 - as Basic Understanding of Electrolysis

Ryosuke O. Suzuki1, Hiromi Noguchi1, Hiromasa Hada1, Shungo Natsui1 and Tatsuya Kikuchi1

1Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Electrochemical decomposition of CaTiO3 at the cathode was examined in a scheme of titanium metal production from natural deposit, Ilmenite (TiFeO3). Based on the possible precipitation of CaTiO3 from TiFeO3, the electrochemical decomposition of CaTiO3 is here examined using combination of the calciothermic reduction and the electrolysis of CaO in the same molten salt. Inhomogeneous reduction in the cathodic basket is related with buoyancy of Ca and insufficient dehydration. By optimizing the cooling conditions, CaO content in the molten salt, and dehydration method, an industrial level of 0.42 mass%O could be achieved as powder form.


(Received 2016/09/05; Accepted 2016/10/17; Published 2017/02/25)

Keywords: calcium chloride, calciothermic reduction, molten salt electrolysis, titanium production

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. G.Z. Chen, D.J. Fray and T.W. Farthing: Nature 407 (2000) 361-364.
  2. C. Schwandt and D.J. Fray: Electrochim. Acta 51 (2005) 66-76.
  3. C. Schwandt, G.T.L. Alexander and D.J. Fray: Electrochim. Acta 54 (2009) 3819-3829.
  4. C. Schwandt, G.R. Daughty and D.J. Fray: Key Eng. Mater. 436 (2010) 13-25.
  5. H. Okamoto, “Desk Handbook Phase Diagrams for Binary Alloys,“ ASM International, Materials Park, OH, (2000).
  6. A. Roine, HSC Chemistry, ver.8.0.8, Outotec Oyj, Pori, Finland, (2014).
  7. K. Ono, R.O. Suzuki and J.O.M. Mem: J. Miner. Met. Mater. Soc. 54 (2002) 59-61.
  8. R.O. Suzuki and S. Inoue: Metall. Mater. Trans., B 34 (2003) 277-285.
  9. R.O. Suzuki, K. Teranuma and K. Ono: Metall. Mater. Trans., B 34 (2003) 287-295.
  10. B. Neumann, C. Kröger and H. Jüttner: Z. Elektrochem. 41 (1959) 725-736.
  11. D.A. Wenz, I. Johnson and R.D. Wolson: J. Chem. Eng. Data 14 (1969) 250-252.
  12. G.S. Perry and L.G. MacDonald: J. Nucl. Mater. 130 (1985) 234-241.
  13. D.T. Peterson and J.A. Hinkebein: J. Phys. Chem. 63 (1959) 1360-1363.
  14. R.A. Sharma: J. Phys. Chem. 74 (1970) 3896-3900.
  15. V. Dosaj, C. Aksaranan and D.R. Morris: J. Chem. Soc., Faraday Trans. I 71 (1975) 1083-1098.
  16. H. Fischbach: Steel Res. 56 (1985) 365-68.
  17. L.-I. Staffansson and S. Du: Scand. J. Metall. 21 (1992) 165-171.
  18. A.I. Zaitsev and B.M. Mogutnov: Metall. Mater. Trans., B 32 (2001) 305-311.
  19. T. Takenaka, T. Morishige and M. Umehara, Molten Salts Chemistry and Technology, ed. M. Gaune-Escard and G. M. Haarberg, John Wiley & Sons, Chichester, UK, (2014) pp.143-148.
  20. T. Takenaka, K. Shigeta, H. Masuhama and K. Kubota: ECS Trans. 16 (2009) 441-448.
  21. R.O. Suzuki and S. Fukui: Mater. Trans. 45 (2004) 1665-1671.
  22. R.O. Suzuki: J. Phys. Chem. Solids 66 (2005) 461-465.
  23. K. Kobayashi, Y. Oka and R.O. Suzuki: Mater. Trans. 50 (2009) 2704-2708.
  24. J. Mohanty, K.G. Mishra, R.K. Paramguru and B.K. Mishra: Metall. Mater. Trans., B 43 (2012) 513-518.
  25. B. Bhagat, D. Dye, S.L. Raghunathan, R.J. alling, D. Inman, B.K. Jackson, K.K. Rao and R.J. Dashwood: Acta Mater. 58 (2010) 5057-5062.
  26. M.P. Rogge, J.H. Caldwell, D.R. Ingram, C.E. Green, M.J. Geselbracht and T. Siegrist: J. Sold State Chem. 141 (1998) 338-342.
  27. T.H. Okabe, R.O. Suzuki, T. Oishi and K. Ono: Mater. Trans., JIM 32 (1991) 485-488.
  28. T.H. Okabe, R.O. Suzuki, T. Oishi and K. Ono: Tetsu-to-Hagane 77 (1991) 93-99.
  29. K.T. Jacob and S.T. Gupta: Bull. Mater. Sci. 32 (2009) 611-616.
  30. N. Kobayashi, K. Kobayashi, T. Kikuchi, R.O. Suzuki, Proc. 12th World Conf. on Titanium, ed. by L. Zhou, H. Chang, Y. Lu, D. Xu, Science Press, Beijing, China, (2011) vol.I, pp.84-86.
  31. R.C. DeVries, R. Roy and E.F. Osborn: J. Phys. Chem. 58 (1954) 1069-1073.
  32. H.E. Tulgar: Istanbul Tek. Univ. Bul. 29 (1976) 111-129.
  33. K.T. Jacob and K.P. Abraham: J. Chem. Thermodyn. 41 (2009) 816-820.
  34. K. Jiang, X.H. Hu, M. Ma, D.H. Wang, G.H. Qiu, X.B. Jin and G.Z. Chen: Angw. Chem. Int. Ed. 45 (2006) 428-432.
  35. X.G. Lu, X.L. Zou, C.H. Li, Q.D. Zhong, W.Z. Ding and Z.F. Zhou: Metall. Mater. Trans., B 43 (2012) 503-512.
  36. M. Panigrahi, E. Shibata, A. Iizuka and T. Nakamura: Electrochim. Acta 93 (2013) 143-151.
  37. C.-C. Qi, Y.-X. Hua, K.-H. Chen, Y.-F. Jie, Z.-R. Zhou, J.-J. Ru, L. Xiong and K. Gong: J. Miner. Met. Mater. Soc. 68 (2016) 668-674 (JOM).
  38. N. Asahara, M. Yoshida, Y. Matsuoka and R.O. Suzuki, Molten Salt XIV, ed. by R.A. Mantz, P.C. Trulove, H.C. De Long, C.R. Stafford, M. Hagiwara and D.A. Costa, The Electrochemical Society, Penningston, NJ, USA, (2006) 1063-1070.


© 2016 The Japan Institute of Metals and Materials
Comments to us :