Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.331-340
© 2016 The Japan Institute of Metals and Materials

Direct Extraction of Titanium Alloys/Composites from Titanium Compounds Ores in Molten CaCl2

Xingli Zou1, Shangshu Li1, Xionggang Lu1, Qian Xu1, Chaoyi Chen2, Shuqiang Guo1 and Zhongfu Zhou1, 3

1State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
3Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK

Molten salt electroreduction process provides a simple approach for the facile production of alloys and composites. In this work, the solid oxide membrane (SOM)-assisted molten salt electroreduction process has been used to produce titanium alloys/composites directly from complex titanium compounds ores. The Ti-bearing blast-furnace slag, high titanium slag and natural ilmenite were used as raw materials. The SOM-assisted electroreduction process was carried out in molten calcium chloride (CaCl2) at 950-1000℃ and 3.8 V. The reaction mechanisms of the electroreduction process including the compounding process, the electroreduction process and the impurity-removal process were discussed. The results indicate that Ti5Si3, Ti5Si3/TiC, Ti5Si3/Ti3SiC2, Fe/TiC and TiAl3 alloys/composites can be directly electrosynthesized from different titanium compounds ores. CaTiO3 and Ca12Al14O33 compounds will be commonly generated as intermediate products during the electroreduction process in molten CaCl2. Impurities elements such as Ca and Mg can be removed during the electroreduction process. In addition, it is suggested that element Fe will be firstly generated during electroreduction process and thus can further improve the electronic conductivity of the ilmenite compounds pellets, Fe/TiC composites can be facilely produced from natural ilmenite.


(Received 2016/08/08; Accepted 2016/10/24; Published 2017/02/25)

Keywords: titanium compounds ores, electroreduction, molten salts, titanium alloys, composites

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. Dai, J. Zhu, C. Chen and F. Weng: J. Alloy. Compd. 685 (2016) 784-798.
  2. D. Hu, W. Xiao and G.Z. Chen: Metall. Mater. Trans., B 44 (2013) 272-282.
  3. L. Zhang and J. Wu: Acta Mater. 46 (1998) 3535-3546.
  4. Z. Tang, J.J. Williams, A.J. Thom and M. Akinc: Intermetallics 16 (2008) 1118-1124.
  5. K. Kishida, M. Fujiwara, H. Adachi, K. Tanaka and H. Inui: Acta Mater. 58 (2010) 846-857.
  6. J. Li, D. Jiang and S. Tan: J. Eur. Cera. Soc. 22 (2002) 551-558.
  7. J. Xu, L. Liu, L. Jiang, P. Munroe and Z.-H. Xie: Ceram. Int. 39 (2013) 9471-9481.
  8. H. Abderrazak, F. Turki, F. Schoenstein, M. Abdellaoui and N. Jouini: Int. J. Refract. Met. Hard Mater. 35 (2012) 163-169.
  9. Z. Li, F. Luo, C. He, Z. Yang, P. Li and Y. Hao: J. Alloy. Compd. 618 (2015) 508-511.
  10. Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu and L. Zhou: J. Alloy. Compd. 644 (2015) 404-410.
  11. Y. Zhu, A. Zhou, Y. Ji, J. Jia, L. Wang, B. Wu and Q. Zan: Ceram. Int. 41 (2015) 6950-6955.
  12. Y. Zhou and Z. Sun: J. Phys. Condens. Matter 12 (2000) 457-462.
  13. D.T. Wan, C.F. Hu, Y.W. Bao and Y.C. Zhou: Wear 262 (2007) 826-832.
  14. W. Dang, S. Ren, J. Zhou, Y. Yu, Z. Li and L. Wang: Ceram. Int. 42 (2016) 9972-9980.
  15. Y. Cai, H. Yin, L. Pan, P. Chen and G. Sun: Mater. Sci. Eng. A 571 (2013) 137-143.
  16. J.H. Schneibel and C.J. Rawn: Acta Mater. 52 (2004) 3843-3848.
  17. Y. Liu, J. Chen and Y. Zhou: J. Eur. Cera. Soc. 29 (2009) 3379-3385.
  18. Z. Mei, Y.W. Yan and K. Cui: Mater. Lett. 57 (2003) 3175-3181.
  19. A. Ghasemi-Kahrizsangi and S.F. Kashani-Bozorg: Surf. Coat. Tech. 209 (2012) 15-22.
  20. M.R. Rahimipour and M. Sobhani: Metall. Mater. Trans., B 44 (2013) 1120-1123.
  21. Ö.N. Doğan and J.A. Hawk: Scr. Mater. 33 (1995) 953-958.
  22. Y. Watanabe, H. Eryu and K. Matsuura: Acta Mater. 49 (2001) 775-783.
  23. I. Dinaharan, G.A. Kumar, S.J. Vijay and N. Murugan: Mater. Des. 63 (2014) 213-222.
  24. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho and C.P. Chang: Acta Mater. 54 (2006) 5241-5249.
  25. F. Zhang, L. Lu, M.O. Lai and F.H. Froes: J. Mater. Sci. 38 (2003) 613-619.
  26. Y.F. Yang and D. Mu: J. Eur. Cera. Soc. 34 (2014) 2177-2185.
  27. K. Kasraee, A. Tayebifard and E. Salahi: Adv. Powder Technol. 25 (2014) 885-890.
  28. C.L. Yeh, W.H. Chen and C.C. Hsu: J. Alloy. Compd. 432 (2007) 90-95.
  29. D. Gu, W. Meiners, C. Li and Y. Shen: Mater. Sci. Eng. A 527 (2010) 6340-6345.
  30. J. Wang, Y. Wang and Y. Ding: J. Mater. Process. Technol. 197 (2008) 54-58.
  31. S. Wei, K. Feng, H. Chen, J. Xiong, H. Fan, G. Zhang and H. Wang: J. Alloy. Compd. 541 (2012) 186-191.
  32. P. Persson, A.E.W. Jarfors and S. Savage: J. Mater. Process. Technol. 127 (2002) 131-139.
  33. X. Jiao, X. Wang, X. Kang, P. Feng, L. Zhang, J. Wang and F. Akhtar: Mater. Lett. 181 (2016) 261-264.
  34. H.Y. Sohn and S. Paldey: Metall. Mater. Trans., B 29 (1998) 457-464.
  35. M.V. Karpets, Y.V. Milman, O.M. Barabash, N.P. Korzhova, O.N. Senkov, D.B. Miracle, T.N. Legkaya and I.V. Voskoboynik: Intermetallics 11 (2003) 241-249.
  36. J.-H. Shim, G.-J. Lee and Y.W. Cho: J. Alloy. Compd. 417 (2006) 69-71.
  37. G.Z. Chen, D.J. Fray and T.W. Farthing: Nature 407 (2000) 361-364.
  38. D. Wang, X. Jin and G.Z. Chen: Annu. Rep. Prog. Chem., Sect. C 104 (2008) 189-234.
  39. D.S.M. Vishnu, J. Sure and K.S. Mohandas: Carbon 93 (2015) 782-792.
  40. R. Bhagat, D. Dye, S.L. Raghunathan, R.J. Talling, D. Inman, B.K. Jackson, K.K. Rao and R.J. Dashwood: Acta Mater. 58 (2010) 5057-5062.
  41. U.B. Pal, D.E. Woolley and G.B. Kenney: JOM 53 (2001) 32-35.
  42. A. Martin, D. Lambertin, J.-C. Poignet, M. Allibert, G. Bourges, L. Pescayre and J. Fouletier: JOM 55 (2003) 52-54.
  43. A. Krishnan, U.B. Pal and X.G. Lu: Metall. Mater. Trans., B 36 (2005) 463-473.
  44. X. Zou, K. Zheng, X. Lu, Q. Xu and Z. Zhou: Faraday Discuss. 190 (2016) 53-69.
  45. X. Zou, X. Lu, C. Li and Z. Zhou: Electrochim. Acta 55 (2010) 5173-5179.
  46. A. Krishnan, X.G. Lu and U.B. Pal: Scand. J. Metall. 34 (2005) 293-301.
  47. X. Zou, X. Lu, Z. Zhou, C. Li and W. Ding: Electrochim. Acta 56 (2011) 8430-8437.
  48. X. Zou, X. Lu, Z. Zhou, W. Xiao, Q. Zhong, C. Li and W. Ding: J. Mater. Chem. A 2 (2014) 7421-7430.
  49. X. Zou and X. Lu: J. Manuf. Sci. Prod. 13 (2013) 55-59.
  50. X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding and Z. Zhou: Metall. Mater. Trans., B 43 (2012) 503-512.
  51. X. Zou, X. Lu, Z. Zhou and C. Li: Electrochem. Commun. 21 (2012) 9-13.
  52. M. Ma, D. Wang, W. Wang, X. Hu, X. Jin and G.Z. Chen: J. Alloy. Compd. 420 (2006) 37-45.
  53. K. Chen, Y. Hua, C. Xu, Q. Zhang, C. Qi and Y. Jie: Ceram. Int. 41 (2015) 11428-11435.
  54. R.O. Suzuki, M. Aizawa and K. Ono: J. Alloy. Compd. 288 (1999) 173-182.
  55. L. Sun, Q. Song, Q. Xu, Z. Ning, X. Lu and D.J. Fray: New J. Chem. 39 (2015) 4391-4397.
  56. J. Mohanty, K.G. Mishra, R.K. Paramguru and B.K. Mishra: Metall. Mater. Trans., B 43 (2012) 513-518.
  57. W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao and D. Wang: RSC Adv. 2 (2012) 7588-7593.
  58. M. Estruga, S.N. Girard, Q. Ding, L. Chen, X. Li and S. Jin: Chem. Commun. (Camb.) 50 (2014) 1454-1457.


© 2016 The Japan Institute of Metals and Materials
Comments to us :