Materials Transactions Online

Materials Transactions, Vol.58 No.03 (2017) pp.326-330
© 2016 The Japan Institute of Metals and Materials

Electrochemical Preparation of Porous Ti-13Zr-13Nb Alloy and It's Corrosion Behavior in Ringer's Solution

Tang Yu1, Huayi Yin1, Yi Zhou2, Yining Wang2, Hua Zhu1 and Dihua Wang1

1School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
2School of Stomatology, Wuhan University, Wuhan 430079, China

A ternary titanium alloy (Ti-13Zr-13Nb (TZN)) was prepared by direct electrochemical reduction of a sintered TiO2-ZrO2-Nb2O5 mixture in molten CaCl2 at 850℃ with an energy consumption of 17 kWh/kg-alloy. The electrolytic Ti alloy was well sintered with bright metallic luster, and it was in α+β dual phase and of porous structure with designed composition. The corrosion behaviors of the obtained TZN in Ringer's solution were tested by open circuit potential and potentiodynamic polarization measurements. The results show that the corrosion rate of the porous electrolytic TZN alloy is lower than that of commercial pure titanium (CP-Ti) after being immersed in Ringer's solution for 10 days. The one-step electro-reduction of mixed oxide powers in molten salts could be an energy efficient and straightforward way to prepare porous implantable alloys.


(Received 2016/09/05; Accepted 2016/11/11; Published 2017/02/25)

Keywords: Ti-13Zr-13Nb implant alloy, molten CaCl2, electrochemical reduction, corrosion, Ringer's solution

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Y.B. Wang and Y.F. Zheng: Mater. Lett. 63 (2009) 1293-1295.
  2. E.A. Trillo, C. Ortiz, P. Dickerson, R. Villa, S.W. Stafford and L.E. Murr: J. Mater. Sci. Mater. Med. 12 (2001) 283-292.
  3. C.E. Wen, Y. Yamada and P.D. Hodgson: Mater. Sci. Eng. C 26 (2006) 1439-1444.
  4. M. Geetha, A.K. Singh, R. Asokamani and A.K. Georgia: Prog. Mater. Sci. 54 (2009) 397-425.
  5. S.L. Assis, S. Wolynec and I. Costa: Electrochim. Acta 51 (2006) 1815-1819.
  6. N.T.C. Oliveira, S.R. Biaggio, S. Piazza, C. Sunseri and F.D. Quarto: Electrochim. Acta 49 (2004) 4563-4576.
  7. V.S. Saji and H.C. Choe: Corros. Sci. 51 (2009) 1658-1663.
  8. M.C. Bottino, P.G. Coelho, V.A.R. Henriques, O.Z. Higa, A.H.A. Bressiani and J.C. Bressiani: J. Biomed. Mater. Res. 97 (2008) 689-696.
  9. G.Z. Chen, D.J. Fray and T.W. Farthing: Nature 407 (2000) 361-364.
  10. S.Q. Jiao, L.L. Zhang, H.M. Zhu and D.J. Fray: Electrochim. Acta 55 (2010) 7016-7020.
  11. M. Ma, D.H. Wang, X.H. Hu, X.B. Jin and G.Z. Chen: Chemistry 12 (2006) 5075-5081.
  12. K. Dring, R. Dsahwood and D. Inman: J. Electrochem. Soc. 152 (2005) D184-D190.
  13. J.J. Peng, H.L. Chen, X.B. Jin, T. Wang, D.H. Wang and G.Z. Chen: Chem. Mater. 21 (2009) 5187-5195.
  14. X. Yang, D.H. Wang, Y.D. Liang, H.Y. Yin, S. Zhang, T. Jiang, Y.N. Wang and Y. Zhou: J. Biomed. Mater. Res. 102 (2014) 2395-2407.
  15. J.J. Peng, K. Jiang, W. Xiao, D.H. Wang, X.B. Jin and G.Z. Chen: Chem. Mater. 20 (2008) 7274-7280.
  16. K. Ono and R.O. Suzuki: JOM 54 (2002) 59-61.
  17. R.O. Suzuki, K. Ono and K. Teranuma: Metall. Mater. Trans., B 34 (2003) 287-295.
  18. T. Kikuchi, M. Yoshida, Y. Taguchi, H. Habazaki and R.O. Suzuki: J. Alloy. Compd. 586 (2014) 148-154.
  19. R. Enmei, T. Kikuchi and R.O. Suzuki: Electrochim. Acta 100 (2013) 257-260.
  20. S. Osaki, H. Sakai and R.O. Suzuki: J. Electrochem. Soc. 157 (2010) E117-E121.
  21. Y. Zhu, M. Ma, D.H. Wang, K. Jiang, X.H. Hu, X.B. Jin and G.Z. Chen: Chin. Sci. Bull. 51 (2006) 2535-2540.
  22. H.Y. Yin, T. Yu, D.Y. Tang, X.F. Ruan, H. Zhu and D.H. Wang: Mater. Chem. Phys. 133 (2012) 465-470.
  23. W. Xiao, X.B. Jin, Y. Deng, D.H. Wang, X.H. Hu and G.Z. Chen: ChemPhysChem 7 (2006) 1750-1758.
  24. K. Jiang, X.H. Hu, H.J. Sun, D.H. Wang, X.B. Jin, Y.Y. Ren and G.Z. Chen: Chem. Mater. 16 (2004) 4324-4329.
  25. K. Jiang, X.H. Hu, X.B. Jin, D.H. Wang and G.Z. Chen: ECS Trans. 33 (2010) 273-276.
  26. P. Gao, X.B. Jin, D.H. Wang, X.H. Hu and G.Z. Chen: J. Electroanal. Chem. 579 (2005) 321-328.
  27. G.H. Qiu, K. Jiang, M. Ma, D.H. Wang, X.B. Jin and G.Z. Chen: Z. Naturfors: Sect. A-J. Phys. Sci. 62 (2007) 292-302.
  28. G.Z. Chen and D.J. Fray: J. Electrochem. Soc. 149 (2002) E455-E467.
  29. J.J. Peng, G.M. Li, H.L. Chen, D.H. Wang, X.B. Jin and G.Z. Chen: J. Electrochem. Soc. 157 (2010) F1-F9.
  30. A.M. Abdelkader, A. Daher, R.A. Abdelkareem and E. El-Kashif: Metall. Mater. Trans., B 38 (2007) 35-44.
  31. T. Wu, W. Xiao, X.B. Jin, C. Liu, D.H. Wang and G.Z. Chen: Phys. Chem. Chem. Phys. 10 (2008) 1809-1818.
  32. Q.S. Song, Q. Xu, X. Kang, J.H. Du and Z.P. Xi: J. Alloy. Compd. 490 (2010) 241-246.
  33. G.H. Qiu, M. Ma, D.H. Wang, X.B. Jin, X.H. Hu and G.Z. Chen: J. Electrochem. Soc. 152 (2005) E328-E366.
  34. S.Y. Yu and J.R. Scully: Corros. 53 (1997) 965-976.
  35. P. Majumdar, S.B. Singh, U.K. Chatterjee and M. Chakraborty: J. Mater. Sci. Mater. Med. 22 (2011) 797-807.
  36. Y. Tsutsumi, S. Bartáková, P. Prachár, S. Yalatu and S. Migita: J. Electrochem. Soc. 159 (2012) C435-C440.


© 2016 The Japan Institute of Metals and Materials
Comments to us :