Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.298-301
© 2016 The Japan Institute of Metals and Materials

Pseudocapacitive Behavior of Ag3PO4 Nanospheres Prepared by a Sonochemical Process

Chengxiang Zheng1, Hua Yang1 and Yang Yang1

1School of Science, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China

Ag3PO4 nanospheres with an average size of ~300 nm were synthesized via a sonochemical process. The electrochemical performances of the as-synthesized Ag3PO4 nanospheres in aqueous KOH electrolyte with different concentrations were investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The measured cyclic voltammetry curves as well as charge-discharge curves reveal a good pseudocapacitive behavior of Ag3PO4 nanospheres. In a 1 M KOH electrolyte at a current density of 0.5 mA cm−2, the specific capacitance of Ag3PO4 nanospheres is obtained to be 832 F g−1. However, Ag3PO4 nanospheres exhibit an inferior charge-discharge cycling stability, which could be due to the formation of Ag2O during the cycling process.


(Received 2016/09/05; Accepted 2016/11/17; Published 2017/01/25)

Keywords: spherical Ag3PO4 particles, KOH electrolyte, electrochemical performance, pseudocapacitance

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. P. Simon and Y. Gogotsi: Nat. Mater. 7 (2008) 845-854.
  2. M. Winter and R.J. Brodd: Chem. Rev. 104 (2004) 4245-4269.
  3. Y.H. Hsu, C.C. Lai, C.L. Ho and C.T. Lo: Electrochim. Acta 127 (2014) 369-376.
  4. C. Merlet, B. Rotenberg, P.A. Madden, P.L. Taberna, P. Simon, Y. Gogotsi and M. Salanne: Nat. Mater. 11 (2012) 306-310.
  5. C.C. Hu, K.H. Chang, M.C. Lin and Y.T. Wu: Nano Lett. 6 (2006) 2690-2695.
  6. Z.N. Yu, B. Duong, D. Abbitt and J. Thoma: Adv. Mater. 25 (2013) 3302-3306.
  7. R. Tummala, R.K. Guduru and P.S. Mohanty: J. Power Sources 209 (2012) 44-51.
  8. G.A. Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji and Y. Hayakawa: Dalton T. 44 (2015) 4485-4497.
  9. J. Yang, T.B. Lan, J.D. Liu, Y.F. Song and M.D. Wei: Electrochim. Acta 105 (2013) 489-495.
  10. Y.C. Zhang, H. Yang, W.P. Wang, H.M. Zhang, R.S. Li, X.X. Wang and R.C. Yu: J. Alloy. Compd. 684 (2016) 707-713.
  11. G.Q. Zhang and X.W. Lou: Adv. Mater. 25 (2013) 976-979.
  12. G.K. Veerasubramani, K. Krishnamoorthy, R. Sivaprakasam and S.J. Kim: Mater. Chem. Phys. 147 (2014) 836-842.
  13. I. Shown, A. Ganguly, L.C. Chen and K.H. Chen: Energy Science & Engineering 3 (2015) 2-26.
  14. Y. Bi, S. Ouyang, N. Umezawa, J. Cao and J. Ye: J. Am. Chem. Soc. 133 (2011) 6490-6492.
  15. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R.L. Withers: Nat. Mater. 9 (2010) 559-564.
  16. H. Hu, Z. Jiao, H. Yu, G. Lu, J. Ye and Y. Bi: J. Mater. Chem. A 1 (2013) 2387-2390.
  17. N. Umezawa, O. Shuxin and J. Ye: Phys. Rev. B 83 (2011) 035202.
  18. S.G. Li, F. Teng, M.D. Chen, N. Li, X. Hua, K. Wang and M. Li: Chem. Phys. Lett. 601 (2014) 59-62.
  19. Y. Yang, H. Yang, R.S. Li and X.X. Wang: Micro & Nano Lett. 11 (2016) 179-182.
  20. M. Aghazadeh, A.N. Golikand and M. Ghaemi: Int. J. Hydrogen Energ. 36 (2011) 8674-8679.
  21. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An and R.S. Ruoff: Nano Lett. 8 (2008) 3498-3502.
  22. K.B. Li, D.W. Shi, Z.Y. Cai, G.L. Zhang, Q.A. Huang, D. Liu and C.P. Yang: Electrochim. Acta 174 (2015) 596-600.


© 2016 The Japan Institute of Metals and Materials
Comments to us :