Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.294-297
© 2016 The Japan Institute of Metals and Materials

Evaluation of Powder Layer Density for the Selective Laser Melting (SLM) Process

Joon-Phil Choi1, Gi-Hun Shin2, 3, Hak-Sung Lee4, 5, Dong-Yeol Yang2, 5, Sangsun Yang2, Chang-Woo Lee5, Mathieu Brochu1 and Ji-Hun Yu2, 5

1Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
2Powder Technology Department, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
3Department of Materials Science and Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
4Materials Modeling and Characterization Department, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
5Metal 3D Printing Convergence Research Team, Korea Institute of Machinery & Materials (KIMM), Daejeon 34103, Republic of Korea

In selective laser melting (SLM), powder properties like size, distribution, shape, flow, and packing have effects on the process and the final parts quality, and several standards and methods are available for representing these characteristics. However, these are not enough to explain the actual packing state of the particles across the powder bed substrate. This work reports a novel method for evaluation of the powder layer density in the SLM process. The results show that the powder characteristics measured by conventional methods are not always appropriate for determining whether a powder material is suitable for SLM.


(Received 2016/10/18; Accepted 2016/11/15; Published 2017/01/25)

Keywords: selective laser melting, powder layer density, flowability, 316L stainless steel powder

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. L. Gibson, D.W. Rosen, B. Stucker: Additive manufacturing technology: rapid prototyping to direct digital manufacturing, (Springer, New York, 2010).
  2. S. Upcraft and R. Fletcher: Assembly Autom. 23 (2003) 318-330.
  3. L. Hao, S. Dadbakhsh, O. Seaman and M. Felstead: J. Mater. Process. Technol. 209 (2009) 5793-5801.
  4. P. Rochus, J.Y. Plesseria, M. Van Elsen, J.P. Kruth, R. Carrus and T. Dormal: Acta Astronaut. 61 (2007) 352-359.
  5. D.A. Hollander, M. von Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing and O. Paar: Biomater. 27 (2006) 955-963.
  6. G. Levy, R. Schindel and J.P. Krut: CIRP Ann.-Manuf. Techn. 52 (2003) 589-609.
  7. I. Yadroitsev, Selective laser melting: direct manufacturing of 3D-objects by selective laser melting of metal powders, (LAP Lambert Academic Publishing AG & Co KG, Saarbrucken, 2009).
  8. P. Kulkarni, A. Marsan and D. Dutta: Rapid Prototyping J. 6 (2000) 18-35.
  9. I. Yadroitsev, P. Bertrand and I. Smurov: Appl. Surf. Sci. 253 (2007) 8064-8069.
  10. R. Engeli, T. Etter, S. Hövel and K. Wegener: J. Mater. Process. Technol. 229 (2016) 484-491.
  11. H.H. Zhu, J.Y.H. Fuh and L. Lu: Int. J. Mach. Tools Manuf. 47 (2007) 294-298.
  12. R.M. German: Powder Metallurgy and Particulate Materials Processing, (MPIF, Princeton, New Jersey, 2005).
  13. Anonymous: Standard test methods for metal powders and powder metallurgy products, (MPIF, Princeton, New Jersey, 2002).
  14. R.O. Grey and J.K. Beddow: Powder Technol. 2 (1969) 323-326.
  15. I. Saxl: Stereology of objects with internal microstructure, (Academia, Prague, 1989).
  16. R.M. German: Powder metallurgy science, (MPIF, Princeton, New Jersey, 1984).
  17. E.R. Rice and J. Tengzelius: Powder Metall. 29 (1986) 183-194.
  18. P. Karapatis: A sub-process approach of selective laser sintering, PhD thesis, (Ecole Polytechnique Federal de Lausanne, Switzerland, 2002).
  19. S. Das: Adv. Eng. Mater. 5 (2003) 701-711.
  20. P.A. Kobryn, S.L. Semiatin: Mechanical properties of laser-deposited Ti-6Al-4V, (Proceedings of Annual International Solid Freeform Fabrication Symposium, Austin, 2001).
  21. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth: Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, (Proceedings of Annual International Solid Freeform Fabrication, Austin, 2011).


© 2016 The Japan Institute of Metals and Materials
Comments to us :