Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.291-293
© 2017 The Japan Institute of Light Metals

Accelerated Formation of an Ultrafine-Grained Microstructure in Closed-Cell Aluminum Foam after Extrusion and Differential Speed Rolling

W.Y. Kim1, W.J. Kim2 and H. Utsunomiya1

1Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
2Department of Materials Science and Engineering, Hongik University, Mapo-gu, Sangsu-dong 72-1, Seoul 121-791, Republic of Korea

Plastic deformation by extrusion and high-ratio differential speed rolling on closed-cell aluminum foams resulted in the formation of ultrafine grains in the densified matrix. The microstructure had an average grain size of 1.30 μm and a fraction of high angle boundaries of 0.7. Under the same processing condition, only dynamic recovery occurred in the bulk aluminum. During deformation of the foam, continuous dynamic recrystallization accelerated at the cell walls due to the occurrence of a high degree of severe plastic deformation there. The bonded interfaces created by pore closure also provided a number of sites of high angle grain boundaries, thereby contributing to the grain refinement.


(Received 2016/10/01; Accepted 2016/11/14; Published 2017/01/25)

Keywords: electron backscatter diffraction (EBSD), porous materials, extrusion, differential speed rolling, grain refinement, recrystallization

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. Banhart: Prog. Mater. Sci. 46 (2001) 559-632.
  2. G.J. Davies and S. Zhen: J. Mater. Sci. 18 (1983) 1899-1911.
  3. T. Miyoshi, M. Itoh, S. Akiyama and A. Kitahara: Adv. Eng. Mater. 2 (2000) 179-183.
  4. H. Utsunomiya and R. Matsumoto: Procedia Mater. Sci. 4 (2014) 245-249.
  5. E.A. El-Danaf, M.S. Soliman, A.A. Almajid and M.M. El-Rayes: Mater. Sci. Eng. A 458 (2007) 226-234.
  6. W.Y. Kim, R. Matsumoto and H. Utsunomiya: Procedia Mater. Sci., in press.
  7. W.J. Kim, J.B. Lee, W.Y. Kim, H.T. Jeong and H.G. Jeong: Scr. Mater. 56 (2007) 309-312.
  8. Y.H. Ji, J.J. Park and W.J. Kim: Mater. Sci. Eng. A 454-455 (2007) 570-574.
  9. W.Y. Kim and W.J. Kim: Mater. Sci. Eng. A 594 (2014) 189-192.
  10. S. Gourdet and F. Montheillet: Acta Mater. 51 (2003) 2685-2699.
  11. L.J. Gibson and M.F. Ashby: Cambridge University Press, Cambridge, 1997.
  12. A-F. Bastawros, H. Bart-Smith and A.G. Evans: J. Mech. Phys. Solids 48 (2000) 301-322.
  13. A.P. Zhilyaev, K. Oh-ishi, G.I. Raab and T.R. McNelley: Mater. Sci. Eng. A 441 (2006) 245-252.


© 2017 The Japan Institute of Light Metals
Comments to us :