Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.271-279
© 2017 The Japan Institute of Metals and Materials

Effects of Mo Addition on the Mechanical Properties and Microstructures of Ti-Mn Alloys Fabricated by Metal Injection Molding for Biomedical Applications

Pedro Fernandes Santos1, Mitsuo Niinomi2, 3, 4, 5, Ken Cho3, Huihong Liu6, Masaaki Nakai7, Takayuki Narushima1, Kyosuke Ueda1 and Yoshinori Itoh8

1Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2Graduate School of Science and Technology, Meijo University, Nagoya 468-8502, Japan
3Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
4Institute of Materials Research, Tohoku University, Sendai 980-8577, Japan
5Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
6Joining and Welding Research Institute, Osaka University, Ibaraki 567-0047, Japan
7Department of Mechanical Engineering, Faculty of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
8Hamamatsu Technical Support Center Industrial Research Institute of Shizuoka Prefecture, Hamamatsu 431-2103, Japan

Ti-Mn alloys fabricated by metal injection molding (MIM) show promising performance for biomedical applications, but their low ductility (caused by high O content and the presence of pores and carbides) requires improvement. Previously, the addition of Mo to cold crucible levitation melted (CCLM) Ti-Mn alloys efficiently improved the ductility of those alloys by promoting mechanical twinning. In the present study, Mo was added to Ti-Mn alloys fabricated by MIM. Unlike fabrication by CCLM, fabrication by MIM can produce alloys with a smaller grain size, and also introduce microstructures such as pores and Ti carbides. Thus, in order to investigate how Mo addition interacts with these typical MIM features, four alloys for biomedical applications were fabricated by MIM: Ti-5Mn-3Mo (TMM-53), Ti-5Mn-4Mo (TMM-54), Ti-6Mn-3Mo (TMM-63), and Ti-6Mn-4Mo (TMM-64). Their microstructures, mechanical properties, and tensile deformation mechanisms were evaluated. Their hardness values range from 312-359 HV, and their Young's modulus values range from 84-88 GPa; both the Vickers hardness and Young's modulus show little variation among the alloys. Although the alloys show fracture features associated with a predominantly ductile fracture mode and Mo addition successfully promotes mechanical twinning in TMM-54, the elongation of these alloys is still critically low. Compared to the TMM alloys fabricated by CCLM, the TMM alloys fabricated by MIM show slightly lower hardness and Young's modulus, and comparable tensile strength, with their low elongation remaining inadequate for such applications. In particular, TMM-63 shows the best combination of mechanical properties among the present alloys, with an elongation of 4% and an ultimate tensile strength of 1145 MPa.

[doi:10.2320/matertrans.M2016286]

(Received 2016/08/18; Accepted 2016/11/21; Published 2017/01/25)

Keywords: titanium-manganese-molybdenum alloys, β-phase, mechanical properties, deformation mechanisms, metal injection molding

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. M. Niinomi: Metall. Mater. Trans., A 33 (2002) 477-486.
  2. M. Niinomi: J. Mech. Behav. Biomed. Mater. 1 (2008) 30-42.
  3. M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia: Prog. Mater. Sci. 54 (2009) 397-425.
  4. M. Niinomi: Mater. Sci. Eng. A 243 (1998) 231-236.
  5. T. Kodama: Kokubyo Gakkai Zasshi 56 (1989) 263-288.
  6. J.L. Domingo: Biol. Trace Elem. Res. 88 (2002) 97-112.
  7. D.P. Perl: Environ. Health Perspect. 63 (1985) 149-153.
  8. ATSDR (Agency for Toxic Substances and Disease Registry): Public Health Statement for Aluminum (2008) (online).
  9. M. Niinomi, M. Nakai and J. Hieda: Acta Biomater. 8 (2012) 3888-3903.
  10. R.M. Pilliar, H.U. Cameron, A.G. Binnington, J. Szivek and I. Macnab: J. Biomed. Mater. Res. 13 (1979) 799-810.
  11. D.R. Sumner, T.M. Turner, R. Igloria, R.M. Urban and J.O. Galante: J. Biomech. 31 (1998) 909-917.
  12. Y.L. Hao, S.J. Li, S.Y. Sun and R. Yang: Mater. Sci. Eng. A 441 (2006) 112-118.
  13. W. Guo, M.Z. Quadir, S. Moricca, T. Eddows and M. Ferry: Mater. Sci. Eng. A 575 (2013) 206-216.
  14. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mater. Sci. Eng. A 243 (1998) 244-249.
  15. P.J. Bania: JOM 46 (1994) 16-19.
  16. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui and S. Niwa: Mater. Trans. 43 (2002) 2970-2977.
  17. L. Erdmann and T.E. Graedel: Environ. Sci. Technol. 45 (2011) 7620-7630.
  18. U.S. Department of Energy: Critical Materials Strategy (2011) (online).
  19. P.F. Santos, M. Niinomi, K. Cho, M. Nakai, H. Liu, N. Ohtsu, M. Hirano, M. Ikeda and T. Narushima: Acta Biomater. 26 (2015) 366-376.
  20. K. Cho, M. Niinomi, M. Nakai, H. Liu, P.F. Santos, Y. Itoh, M. Ikeda, M. Abdel-Hady Gepreel and T. Narushima: J. Alloy. Compd. 664 (2016) 272-283.
  21. P.F. Santos, M. Niinomi, H. Liu, K. Cho, M. Nakai, Y. Itoh, T. Narushima and M. Ikeda: J. Mech. Behav. Biomed. Mater. 59 (2016) 497-507.
  22. T. Saito: Adv. Perform. Mater. 2 (1995) 121-144.
  23. P.F. Santos, M. Niinomi, H. Liu, K. Cho, M. Nakai, A. Trenggono, S. Champagne, H. Hermawan and T. Narushima: Mater. Des. 110 (2016) 414-424.
  24. Y. Itoh, H. Miura, T. Uematsu, T. Osada and K. Sato: J. Solid Mech. Mater. Eng. 3 (2009) 921-930.
  25. R. Boyer, G. Welsch and E. W. Collings: Materials Properties Handbooks - Titanium Alloys (ASM International, 1993).
  26. E. Bertrand, P. Castany, I. Péron and T. Gloriant: Scr. Mater. 64 (2011) 1110-1113.
  27. F. Sun, J.Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laillé, P. Castany, C. Curfs, P.J. Jacques and F. Prima: Acta Mater. 61 (2013) 6406-6417.
  28. S.-J. L. Kang: Sintering - Densification, Grain Growth and Microstructure (Butterworth-Heinemann, 2004).
  29. R. P. Elliott: Armed Services Technical Information Agency/AD 290 336 (Arlington Hall Station 1962).
  30. D. F. Heaney: Handbook of Metal Injection Molding (Elsevier Science, 2012).
  31. R. German: Materials (Basel) 6 (2013) 3641-3662.
  32. P.G. Esteban, L. Bolzoni, E.M. Ruiz-Navas and E. Gordo: Powder Metall. 54 (2011) 242-252.
  33. A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, S. Banerjee, R. Banerjee and H.L. Fraser: Acta Mater. 60 (2012) 596-609.
  34. W.F. Ho: J. Med. Biol. Eng. 28 (2008) 47-51.
  35. N.E. Paton and J.C. Williams: Scr. Metall. 7 (1973) 647-649.
  36. C. Hammond and J. Nutting: Prog. Met. Phys. 7 (1977) 65-163.
  37. H. R. Ogden and R. I. Jaffee: Office of Assistant Secretary of Defense for Research and Development (1955).
  38. G.P. Tiwari and R.V. Ramanujan: J. Mater. Sci. 36 (2001) 271-283.
  39. F. Geng, M. Niinomi and M. Nakai: Mater. Sci. Eng. A 528 (2011) 5435-5445.
  40. H. Liu, M. Niinomi, M. Nakai, K. Cho, K. Narita, M. Şen, H. Shiku and T. Matsue: Acta Biomater. 12 (2015) 352-361.
  41. D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan and F. Pyczak: J. Mech. Behav. Biomed. Mater. 28 (2013) 171-182.
  42. M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques and F. Prima: Scr. Mater. 66 (2012) 749-752.
  43. G.C. Obasi, O.M. Ferri, T. Ebel and R. Bormann: Mater. Sci. Eng. A 527 (2010) 3929-3935.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp