Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.266-270
© 2016 The Japan Institute of Metals and Materials

Structural Crosstalk between Crystallographic Anisotropy in Bone Tissue and Vascular Network Analyzed with a Novel Visualization Method

Aiko Sekita1, Aira Matsugaki1 and Takayoshi Nakano1

1Division of Materials Science and Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan

Bone tissue has a highly anisotropic microstructure derived from the crystallographic orientation of apatite and the related collagen matrix alignment. Bone is also a highly vascularized tissue; intraosseous vascularization and bone formation are intimately coupled. Meanwhile, the structural relations between intraosseous vascular networks and bone microstructure are as yet unknown, partially due to technical difficulties in visualizing precise intraosseous vasculatures. The aim of this study is to develop a visualization method suitable for the structural analysis of intraosseous vascular networks and to reveal the relations between bone microstructure and the arrangement patterns of intraosseous vasculatures. Three-dimensional vascular networks were successfully visualized, and region-dependent arrangement patterns of blood vessels were clarified using fluorescent dye-conjugated lectin. Interestingly, the anisotropic structural correlation between bone matrix and the vascular system in a region-specific manner was clarified. The obtained results indicate the molecular interactions between the vascular system and bone tissue as a novel contributor for realization of anisotropic bone matrix construct.


(Received 2016/10/31; Accepted 2016/11/15; Published 2017/01/25)

Keywords: bone tissue anisotropy, correlation between bone matrix and vascular system, intraosseous vascular networks, three-dimensional visualization, structural patterns, longitudinal alignment

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. M. Marenzana and T.R. Arnett: Bone Res. 1 (2013) 203-215.
  2. G.Z. Eghbali-Fatourechi, J. Lamsam, D. Fraser, D. Nagel, B.L. Riggs and S. Khosla: N. Engl. J. Med. 352 (2005) 1959-1966.
  3. N. Dirckx, M. Van Hul and C. Maes: Birth Defects Res. C Embryo Today 99 (2013) 170-191.
  4. T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, E. Marukawa and Y. Umakoshi: Bone 31 (2002) 479-487.
  5. J.W. Lee, T. Nakano, S. Toyosawa, Y. Tabata and Y. Umakoshi: Mater. Trans. 48 (2007) 337-342.
  6. T. Ishimoto, T. Nakano, Y. Umakoshi, M. Yamamoto and Y. Tabata: J. Bone Miner. Res. 28 (2013) 1170-1179.
  7. T.T. Shih, H.C. Liu, C.J. Chang, S.Y. Wei, L.C. Shen and P.C. Yang: Radiology 233 (2004) 121-128.
  8. W.G. Ding, W.H. Yan, Z.X. Wei and J.B. Liu: J. Bone Miner. Metab. 30 (2012) 400-407.
  9. R.E. Tomlinson and M.J. Silva: Bone Res. 1 (2013) 311-322.
  10. H.B. Kristensen, T.L. Andersen, N. Marcussen, L. Rolighed and J.M. Delaisse: J. Bone Miner. Res. 28 (2013) 574-585.
  11. I.B. Mazo, J.C. Gutierrez-Ramos, P.S. Frenette, R.O. Hynes, D.D. Wagner and U.H. von Andrian: J. Exp. Med. 188 (1998) 465-474.
  12. M. Langer, R. Prisby, Z. Peter, R. Boistel, M.H. Lafage-Proust and F. Peyrin: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009 (2009) 1004-1007.
  13. P. Schneider, T. Krucker, E. Meyer, A. Ulmann-Schuler, B. Weber, M. Stampanoni and R. Muller: Microsc. Res. Tech. 72 (2009) 690-701.
  14. I. Giuvarasteanu: Rom. J. Morphol. Embryol. 48 (2007) 257-261.
  15. A. Skawina, J.A. Litwin, J. Gorczyca and A.J. Miodonski: J. Anat. 185 (1994) 369-376.
  16. M.H. Lafage-Proust, B. Roche, M. Langer, D. Cleret, A. Vanden Bossche, T. Olivier and L. Vico: Bonekey Rep. 4 (2015) 662.
  17. U.E. Pazzaglia, G. Bonaspetti, L.F. Rodella, F. Ranchetti and F. Azzola: J. Anat. 211 (2007) 303-312.
  18. J.M. McMahon, A. Boyde and T.G. Bromage: Anat. Rec. 242 (1995) 147-158.
  19. K. Sasaki, T. Nakano, J.D. Ferrara, J.W. Lee and T. Sasaki: Mater. Trans. 49 (2008) 2129-2135.
  20. N. Milne1 and P. O'Higgins: Proc. Biol. Sci. 279 (2012) 3449-3456.
  21. M.G. Ascenzi and A.K. Roe: Front. Biosci. 17 (2012) 1551-1581.
  22. N.A. Sims and T.J. Martin: Bonekey Rep. 3 (2014) 481.
  23. A.P. Kusumbe, S.K. Ramasamy and R.H. Adams: Nature 20 (2014) 323-328.
  24. A. Ben Shoham, C. Rot, T. Stern, S. Krief, A. Akiva, T. Dadosh, H. Sabany, Y. Lu, K.E. Kadler and E. Zelzer: Development (2016); Epub ahead of print.
  25. S.L. Dallas, M. Prideaux and L.F. Bonewald: Endocr. Rev. 34 (2013) 658-690.
  26. L.F. Bonewald: J. Bone Miner. Res. 26 (2011) 229-238.
  27. A. Vatsa, R.G. Breuls, C.M. Semeins, P.L. Salmon, T.H. Smit and J. Klein-Nulend: Bone 43 (2008) 452-458.
  28. T. Ishimoto, K. Kawahara, A. Matsugaki, J. Wang, H. Kamioka and T. Nakano: Mater. Sci. Forum 783-786 (2014) 1265-1268.
  29. F.L. Bach-Gansmo, J.C. Weaver, M.H. Jensen, H. Leemreize, K.S. Mader, M. Stampanoni, A. Bruel, J.S. Thomsen and H. Birkedal: J. Struct. Biol. 191 (2015) 59-67.
  30. M. Sasaki, H. Hongo, T. Hasegawa, R. Suzuki, L. Zhusheng, P.H.L. de Freitas, T. Yamada, K. Oda, T. Yamamoto, M. Li, Y. Totsuka and N. Amizuka: Oral Sci. Int. 9 (2012) 1-8.


© 2016 The Japan Institute of Metals and Materials
Comments to us :