Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.160-163
© 2017 The Japan Institute of Metals and Materials

Thermoelectric Properties of p-Type Cr Doped MnSiγ Prepared by Liquid Quenching Technique

Swapnil Ghodke1, A. Yamamoto2, M. Omprakash2, H. Ikuta1 and T. Takeuchi2, 3

1Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan
2Toyota Technological Institute, Nagoya 468-8511, Japan
3Green Mobility Collaborative Research Center, Nagoya University, Nagoya 464-8603, Japan

In this work, higher manganese silicide (HMS) with partial substitution of Cr for Mn has been studied. The Cr substitution was used to tune the carrier concentration for obtaining optimized thermoelectric properties. In order to have a wide range of carrier concentration, we employed liquid quenching technique, because the rapid quenching increases the solubility of Cr in HMS. The maximum solubility of 11 at.% Cr at Mn site in HMS was achieved in this study. The hole concentration increases with increasing Cr concentration, with that minimum electrical resistivity of 1 mΩcm was observed for Mn25.3Cr11Si63.9. The power factor was decreased with increasing Cr concentration due to reduction in Seebeck coefficient, but further addition of Cr showed increasing tendency for power factor. The maximum power factor of 1.5 mWm−1K−2 with ZT of 0.4 was obtained at 700 K for Mn25.3Cr11Si63.9.


(Received 2016/07/04; Accepted 2016/11/21; Published 2017/01/25)

Keywords: thermoelectrics, higher manganese silicide, liquid quenching, carrier concentration

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. H. J. Goldsmid, Introduction to Thermoelectricity, (Springer, Heidelberg, 2009), pp. 43-61.
  2. J.R. Sootsman, D.Y. Chung and M.G. Kanatzidis: Angew. Chem. Int. Ed. Engl. 48 (2009) 8616-8639.
  3. V. K. Zaitsev, Thermoelectrics Handbook, ed. D. M.Rowe (CRC Press, Boca Raton, FL, 1995) Chap. 25.
  4. T. Takeuchi: Mater. Trans. 50 (2009) 2359.
  5. T. Takeuchi, A. Yamamoto and S. Ghodke: Mater.Trans. (2016). doi:10.2320/materials.MF201610
  6. T. Itoh and M. Yamada: J. Electron. Mater. 38 (2009) 925-929.
  7. Y. Miyazaki and Y. Kikuchi, Thermoelectric Nanomaterials, ed. by K. Koumoto and T. Mori (Springer, Heidelberg, 2013) Vol. 182, pp.141-155.
  8. Y. Kikuchi, Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta and T. Kajitani: Jpn. J. Appl. Phys. 51 (2012) 085801.
  9. V. Ponnambalam and D.T. Morelli: J. Electron. Mater. 41 (2012) 1389-1394.
  10. S. Ghodke, N. Hiroishi, A. Yamamoto, H. Ikuta and M. Matsunami: J. Electron. Mater. 45 (2016) 5279-5284.
  11. A. Yamamoto, S. Ghodke, H. Miyazaki, M. Inukai, Y. Nishino, M. Matsunami and T. Takeuchi: J. Appl. Phys. 55 (2016) 020301.
  12. T.Z. Kattamis and S. Skolianos, Rapid Quenching of Metals, ed. by S. Steeb, Vol. 1 (Elsevier, Germany, 1985), pp. 51-54.
  13. N.E. Hussey, K. Takenaka and H. Takagi: Philos. Mag. 84 (2004) 2847.
  14. M. Zebarjadi, K. Esfarjani, A. Shakouri, J.H. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide and A. Gossard: Appl. Phys. Lett. 94 (2009) 202105.
  15. A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, K.A. Khor, M.S. Dresselhaus and Q. Xiong: Nano Lett. 12 (2012) 4305-4310.


© 2017 The Japan Institute of Metals and Materials
Comments to us :