Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.157-159
© 2017 The Japan Institute of Metals and Materials

Infrared Spectroscopic and Computational Studies on Li4FeH6 with High Gravimetric Hydrogen Density

Takahiro Ogata1, Toyoto Sato1, Shigeyuki Takagi1, Hiroyuki Saitoh2, Yuki Iijima1, Biswajit Paik3 and Shin-ichi Orimo1, 3

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Quantum Beam Science Research Directorate, National Institute for Quantum and Radiological Science and Technology, Hyogo 679-5148, Japan
3WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

We report the vibrational properties of Li4FeH6 with the highest gravimetric hydrogen density in Fe-based complex hydrides. The Fourier transform infrared (FTIR) spectrum shows a broad and weak peak at 600-1000 cm−1 and an intense one at 1400-1800 cm−1, which are assigned with the aid of first-principles calculations to be the H-Fe-H bending modes, and the antisymmetric Fe-H stretching modes, respectively. From the obtained peak frequency of asymmetric stretching modes of Li4FeH6, the Fe-H bond length is estimated to be 1.6 Å, which is in good agreement with the one predicted by first-principles calculations.


(Received 2016/09/28; Accepted 2016/11/10; Published 2017/01/25)

Keywords: hydrogen storage, complex hydride, infrared spectroscopies, first-principles calculations

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. B. Bogdanović, A. Reiser, K. Schlichte, B. Spliethoff and B. Tesche: J. Alloy. Compd. 345 (2002) 77-89.
  2. M. Polanski, T. Płociński, I. Kunce and J. Bystrzycki: Int. J. Hydrogen Energ. 35 (2010) 1257-1266.
  3. M. Matsuo, H. Saitoh, A. Machida, R. Sato, S. Takagi, K. Miwa, T. Watanuki, Y. Katayama, K. Aoki and S. Orimo: RSC Adv. 3 (2013) 1013-1016.
  4. K. Miwa, S. Takagi, M. Matsuo and S. Orimo: J. Phys. Chem. C 117 (2013) 8014-8019.
  5. S. Takagi, T.D. Hamphries, K. Miwa and S. Orimo: Appl. Phys. Lett. 104 (2014) 203901.
  6. S. Takagi, T. Ikeshoji, T. Sato, K. Aoki and S. Orimo: J. Jpn. Inst. Met. Mater. 77 (2013) 604-608.
  7. H. Saitoh, S. Takagi, M. Matsuo, Y. Iijima, N. Endo, K. Aoki and S. Orimo: APL Mat. 2 (2014) 076103.
  8. S. Takagi and S. Orimo: Scr. Mater. 109 (2015) 1-5.
  9. M. Kritikos, D. Noréus, A.F. Andresen and P. Fischer: J. Solid State Chem. 92 (1991) 514-519.
  10. K. Yvon: Chimia (Aarau) 52 (1998) 613-619.
  11. T. Sato, S. Takagi, M. Matsuo, K. Aoki, S. Deledda, B.C. Hauback and S. Orimo: Mater. Trans. 55 (2014) 1117-1121.
  12. F.M. Brower, N.E. Matzek, P.F. Reigler, H.W. Rinn, C.B. Roberts, D.L. Schmidt, J.A. Snover and K. Terada: J. Am. Chem. Soc. 98 (1976) 2450-2453.
  13. K. Ikeda, S. Muto, K. Tatsumi, M. Menjo, S. Kato, M. Bielmann, A. Züttel, C.M. Jensen and S. Orimo: Nanotechnology 20 (2009) 204004.
  14. A. Kamegawa, Y. Goto, R. Kataoka, H. Takamura and M. Okada: Renew. Energy 33 (2008) 221-225.
  15. H. Saitoh, A. Machida and K. Aoki: Chin. Sci. Bull. 59 (2014) 5290-5301.
  16. S. Takagi, Y. Iijima, T. Sato, H. Saitoh, K. Ikeda, T. Otomo, K. Miwa, T. Ikeshoji, K. Aoki and S. Orimo: Angew. Chem. Int. Ed. 54 (2015) 5650-5653.
  17. P.E. Blöchl: Phys. Rev. B 50 (1994) 17953-17979.
  18. G. Kresse and D. Joubert: Phys. Rev. B 59 (1999) 1758-1775.
  19. J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865-3868.
  20. G. Kresse and J. Hafner: Phys. Rev. B 47 (1993) 558-561.
  21. G. Kresse and J. Furthmüller: Phys. Rev. B 54 (1996) 11169-11186.
  22. H.J. Monkhorst and J.D. Pack: Phys. Rev. B 13 (1976) 5188-5192.
  23. P.-E. Werner, L. Eriksson and M. Westdahl: J. Appl. Crystallogr. 18 (1985) 367-370.
  24. P.-E. Werner: Ark. Kemi 31 (1969) 513-516.
  25. H. Hagemann, V. D'Anna, L.M. Lawson Daku, S. Gomes, G. Renaudin and K. Yvon: J. Phys. Chem. Solids 72 (2011) 286-289.


© 2017 The Japan Institute of Metals and Materials
Comments to us :