Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.152-156
© 2017 The Japan Institute of Metals and Materials

Evolution of Carbides in H13 Steel in Heat Treatment Process

Hao Wang1, Jing Li1, Cheng-Bin Shi1, Ji Li1 and Bao He1

1State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing (USTB), 30 Xueyuan Road, Beijing 100083, P. R. China

In the present work, the carbides in H13 steel were investigated with scanning electron microscope (SEM), energy dispersive spectrum (EDS), X-ray diffraction (XRD), and quantitative analysis method. The experimental results were compared with the calculation results by Thermo-calc software. The results show that the dendritic segregation exists generally in H13 ingots, primary M(C, N), M6(C, N) and a small amount of secondary carbides M7C3 precipitate in the segregation area. The composition segregation is improved after annealing and forging process. A large amount of secondary carbides M7C3 precipitate in the segregation area after annealing process. Primary carbide M6(C, N) are almost dissolved and M(C, N) are partially dissolved in the forged and annealed H13 steel. Most of carbides in the quenched and tempered H13 steel are fine secondary M6(C, N), M23C6 and M(C, N), besides a small amount of primary M(C, N) with smaller size. The evolution mechanism of carbides in heat treatment process was clarified by the calculated results.


(Received 2016/07/25; Accepted 2016/11/07; Published 2017/01/25)

Keywords: carbides, H13 steel, heat treatment, theoretical calculation

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. S.H. Chang, T.P. Tang and K.T. Huang: ISIJ Int. 50 (2010) 569-573.
  2. G.H. Yan, X.M. Huang, Y.Q. Wang, X.G. Qin, M. Yang, Z.M. Chu and K. Jin: Met. Sci. Heat Treat. 52 (2002) 591-601.
  3. X.B. Hu, L. Li, X.C. Wu and M. Zhang: Int. J. Fatigue 28 (2006) 175-182.
  4. D.S. Ma, J. Zhou, Z.Z. Chen, Z.K. Zhang, Q.A. Chen and D.H. Li: J. Iron Steel Res. Int. 16 (2009) 56-60.
  5. J. Zhou, D.S. Ma, B.S. Liu, A.J. Kang and X.Y. Li: (in Chinese) J. Iron Steel Res. 24 (2012) 47-52.
  6. M. Koneshlou, K. Meshinchi Asl and F. Khomamizadeh: Cryogenics 51 (2011) 55-61.
  7. X. Zhou and L. Hua: J. Wuhan University of Technology-Mater. Sci. Ed. 22 (2007) 586-589.
  8. A. Bahrami, S.H.M. Anijdan, M.A. Golozar, M. Shamanian and N. Varahram: Wear 258 (2005) 846-851.
  9. S. Kheirandish and A. Noorian: J. Iron Steel Res. Int. 15 (2008) 61-66.
  10. A.G. Ning, H.J. Guo, X.C. Chen and M.B. Wang: Mater. Trans. 56 (2015) 581-586.
  11. S. Xue, J. Zhou, Y.W. Zhang and P. Geng: (in Chinese) Trans. of Mater. Heat Treat. 33 (2012) 100-105.
  12. G.J. Cai, A. Hans-olof and S. Lars-erik: Mater. Sci. Eng. 242 (1998) 202-209.
  13. A. Inoue and T. Masumoto: Metall. Trans. A 11 (1980) 739-747.
  14. J. Janovec, M. Svoboda, A. Kroupa and A. Výrostková: J. Mater. Sci. 41 (2006) 3425-3433.
  15. X.L. Wu and G.N. Chen: J. Mater. Sci. Lett. 17 (1998) 1849-1852.
  16. B. Zhou, Y. Shen, J. Chen, Z.S. Cui: J. Shanghai Jiaotong University (Science). 15 (2010) 463-471.
  17. J. Janovec, A. Vyrostková, M. Svoboda, A. Kroupa and H.J. Grabke: Metall. Mater. Trans., A 35 (2004) 751-759.
  18. J. Li, J. Li, L.L. Wang and L.F. Li: High Temp. Ma.t Prisr. 34 (2015) 593-598.
  19. Honeycombe: Steels, Microstructure and Properties, (Edward Arnold, London, 1980) pp. 140-165.
  20. G.D. Pigrova: Met. Sci. Heat Treat. 38 (1996) 321-323.


© 2017 The Japan Institute of Metals and Materials
Comments to us :