Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.140-147
© 2017 The Japan Institute of Metals and Materials

Tensile Properties of Bi Alloys and a Case Study for Alloy Design in Their Application to High Temperature Solders

Meiqi Yu1, Zhefeng Xu1, Yong Bum Choi1, Takuma Konishi1, Kazuhiro Matsugi1, Jinku Yu2, Satoshi Motozuka3 and Ken-ichiro Suetsugu4

1Department of Mechanical Materials Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Hebei Street West 438#, Qinhuangdao, 066004, China
3Department of Mechanical Engineering, National Institute of Technology, Gifu College, Motosu 501-0495, Japan
4Center for Environmental Management, Kobe University, Kobe 657-8501, Japan

The s-orbital energy levels (Mk) of some alloying elements in a Bi cluster model were obtained on the basis of the molecular orbital calculation. In contrast, binary Bi-Cu/-Ag/-Zn system alloys with ΔMk of 0.013-0.343 were manufactured and tension- or hardness-tested, where ΔMk was the compositional average of Mk. The ultimate tensile strength and hardness were improved as alloying elements were added and increased in alloys. There was the relation between the ultimate tensile strength, fracture strain or hardness and ΔMk. Further, the compositions of Bi-2.0Ag-0.5Cu (ΔMk: 0.180), Bi-5.0Ag-0.5Cu (ΔMk: 0.379) and Bi-0.25Cu-0.25Sb (ΔMk: 0.044) were proposed as ternary alloys. It is found that the ultimate tensile strength, fracture strain and hardness values of ternary alloys could be also able to predict using their estimation lines obtained from binary Bi system alloys.

[doi:10.2320/matertrans.MA201605]

(Received 2016/07/19; Accepted 2016/11/30; Published 2017/01/25)

Keywords: lead-free solders, high-temperature solders, bismuth alloys, tensile strength, alloy design

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. K. Tsuruta: Met. Technol. (Jpn.) 74 (2004) 1244-1248.
  2. Fuji Electric: Fuji Electric Journal 84 (2011) No.1, No.5.
  3. Nikkei Electronics, Abstract of Seminar: 2010.
  4. R. Mahmudi and M. Eslami: Mater. Sci. Mater. Electron. 22 (2011) 1168-1172.
  5. C. Leinenbach, F. Valenza, D. Giuranno, H. Elsener, S. Jin and R. Novakovic: Electron. Mater. 40 (2011) 1533-41.
  6. T. Gancarz, J. Pstrus, P. Fima and S. Mosinska: Mater. Eng. Perform. 21 (2012) 599-605.
  7. C. Wang, H. Chen and P. Li: Mater. Chem. Phys. 136 (2012) 325-333.
  8. J.Y. Tsai, C.W. Chang, Y.C. Shieh, Y.C. Hu and C.R. Kao: Electron. Mater. 34 (2005) 182.
  9. C. Leinenbach, F. Valenza, D. Giuranno, H.R. Elsener, S. Jin and R. Novakovic: Electron. Mater. 40 (2011) 1533.
  10. S.J. Kim, K.S. Kim, S.S. Kim and K. Suganuma: Electron. Mater. 38 (2009) 266.
  11. K. Suganuma, S.J. Kim and K.S. Kim: JOM 61 (2009) 64-71.
  12. T. Iseki and M. Takamori: J. J. Institute of Electronics Pachaging 15 (2012) 153.
  13. J. C. Slater, Quantun theory of molecules and solids, Vol.4, McGrew-Hill, New York (1974).
  14. R. Ninomiya, Doctoral thesis, Toyohashi University of Technology (1996) pp.124-130.
  15. M. Tsukada, H. Adachi and C. Satoko: Prog. Surf. Sci. 14 (1983) 113.
  16. M. Morinaga and N. Yukawa: Computer Aided Innovation of New Materials, ed. by M. Doyama et al., (North-Holland, 1991) pp. 803-808.
  17. M. Morinaga, N. Yukawa and H. Adachi: Tetsu-to-Hagané 72 (1986) 555-562.
  18. W.J. Boesch and J.S. Slaney: Metal Progress 86 (1964) 109-111.
  19. L. Pauling: Phys. Rev. 54 (1938) 899.
  20. M. Morinaga, N. Yukawa, H. Adachi and H. Ezaki: Superalloys 1984, (The Metallurgical Society of AIME, Warrendale, PA, 1984) pp. 523-532.
  21. K. Matsugi, S. Yamamura, Z.F. Xu, Y.B. Choi, K. Sugio, G. Sasaki and N. Oda: Mater. Trans. 56 (2015) 1675-1682.
  22. M. Morinaga and S. Kamado: Model. Simul. Mater. Sci. Eng. 1 (1993) 151-164.
  23. M. Moringa, S. Nasu, H. Adachi, J. Saito and N. Yukawa: J. Journal of Physics 3 (1991) 6817.
  24. R.S. Mullliken: J. Chem. Phys 23 (1955) 1833.
  25. R.S. Mullliken: J. Chem. Phys 23 (1955) 1841.
  26. R.S. Mullliken: J. Chem. Phys 23 (1955) 2339.
  27. R.S. Mullliken: J. Chem. Phys 23 (1955) 2343.
  28. R. Ninomiya, H. Yukawa and M. Morinaga: Japan Inst. Light Metals 44 (1994) 171-177.
  29. T. Sekino, Y. Choa, A. Nakahira and K. Niihara: Materia Japan 38 (1999) 425-428.
  30. M. Yu, Z. Xu, Y. Choi, K. Matsugi, S. Motozuka, K. Suetsugu and J. Yu: 9th Pacific Rim International Conference on Advanced Materials and Processing (2016) pp. 225-230.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp