Materials Transactions Online

Materials Transactions, Vol.58 No.02 (2017) pp.137-139
© 2016 The Japan Institute of Metals and Materials

Effects of Leveler Concentration in High Aspect Ratio Via Filling in 3D SiP

Se-Hyun Jang1, Tai-Hong Yim2, Young-Sik Song2 and Jae-Ho Lee1

1Deptartment of Materials Science and Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, Korea
2Korea Institute of Industrial Technology (KITECH), 7-47 Songdo-dong, Yeonsu-gu, Incheon, Korea

3D packaging field is actively being studied in order to obtain better characteristics, such as shorter interconnection, reduction in signal delay, etc. Electroplating copper via filling is the most important technology in 3D stacking interconnection of SiP. Copper is inexpensive electrode material that has excellent electrical properties and easily obtained. In this study, the effects of leveler concentration in high aspect ratio via filling was investigated without the addition of other additives such as inhibitor and accelerator. Tetronic 701 was used as leveler. The effects of leveler on copper deposition was investigated using galvanostatic, polarization and cyclic voltammetric techniques. High overpotential of copper deposition in tetronic 701 added solution was confirmed. Finally, the optimum conditions of copper via filling in high aspect ratio via (diameter 10 μm, depth 150 μm, AR 15) was obtained.


(Received 2016/07/20; Accepted 2016/11/22; Published 2017/01/25)

Keywords: via filling, high aspect ratio, copper, electroplating, leveler

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M.H. Lee and J.K. Cho: J. Korean Inst. of Surf. Engr. 46 (2013) 153.
  2. J.J. Sun, K. Kondo, T. Okamura, S.J. Oh, M. Tomisaka, H. Yonemura, M. Hoshino and K. Takahashi: J. Electrochem. Soc. 150 (2003) G355.
  3. W.P. Dow, C.C. Li, Y.C. Su, S.P. Shen, C.C. Huang, C. Lee, B. Hsu and S. Hsu: Electrochim. Acta 54 (2009) 5894.
  4. T.P. Moffat and D. Josell: J. Electrochem. Soc. 159 (2012) D208.
  5. D. Josell, T.P. Moffat and D. Wheeler: J. Electrochem. Soc. 154 (2007) D208.
  6. W.P. Dow, H.S. Huang, M.Y. Yen and H.C. Huang: J. Electrochem. Soc. 152 (2005) C425.
  7. M. Hayase and M. Nagao: J. Electrochem. Soc. 160 (2013) D3216.
  8. J. Tang, Q. Zhu, Y. Zhang, X. Zhang, J. Guo and J. Shang: ECS Electrochem. Lett. 4 (2015) D28.
  9. M. Tan, C. Guymon, D.R. Wheeler and J.N. Harb: J. Electrochem. Soc. 154 (2007) D78.
  10. M.C. Kang and A. Gewirth: J. Electrochem. Soc. 150 (2003) C426.
  11. A. Frank and A.J. Bard: J. Electrochem. Soc. 150 (2003) C244.
  12. R. Kimizuka, H. Toda, T. Eda, K. Kishimoto, R. Oh, H. Honma and O. Takai: J. Electrochem. Soc. 162 (2015) D584.
  13. T.P. Moffat, D. Wheeler, C. Witt and D. Josell: Electrochem. Solid-State Lett. 5 (2002) C110.
  14. M.J. Kim, H.C. Kim, S. Choe, J.Y. Cho, D. Lee, I. Jung, W.S. Cho and J.J. Kim: J. Electrochem. Soc. 160 (2013) D3221.
  15. Y. Zhang, G. Ding, H. Wang, P. Cheng and J. Luo: ECS Electrochem. Lett. 4 (2015) D18.
  16. S.H. Jang, K.S. Choi and J.H. Lee: J. Microelectron. Packag. Soc. 22 (2015) 99.
  17. S.J. Lee, Y.J. Jang, J.H. Lee and J.P. Jung: J. Microelectron. Packag. Soc. 21 (2014) 91.


© 2016 The Japan Institute of Metals and Materials
Comments to us :