Materials Transactions Online

Materials Transactions, Vol.57 No.12 (2016) pp.2153-2157
© 2016 The Japan Institute of Metals and Materials

Effect of Mechanical Alloying on Thermal Conductivity of Bi2Te3-Sb2Te3

Masato Kitamura1 and Kazuhiro Hasezaki2

1Graduate School of Advanced Technology and Science, Tokushima University, Tokushima 770-8506, Japan
2Department of Mechanical Science, Graduate School of Technology and Science, Tokushima University, Tokushima 770-8506, Japan

A Bi2Te3-Sb2Te3 solid solution was prepared by mechanical alloying (MA) followed by hot pressing (HP). X-ray diffraction indicated that all samples which were removed at a depth below the surface of approximately 1 mm were single-phase and isotropic Bi2Te3-Sb2Te3 solid solution. Reduction of the phonon thermal conductivity as a result of the fine-grains caused by MA predominated over the solid-solution effect caused by melt growth. The Seebeck coefficient and electrical and thermal conductivities fluctuated between those for (Bi2Te3)0.15(Sb2Te3)0.85 and (Bi2Te3)0.2(Sb2Te3)0.8 at room temperature. A (Bi2Te3)0.15(Sb2Te3)0.85 solid solution with a dimensionless figure of merit ZT = 1.16 at 367 K was obtained by MA-HP. These results indicate that the maximum ZT of the Bi2Te3-Sb2Te3 solid solution obtained by MA-HP was not restricted to a composition of (Bi2Te3)0.25(Sb2Te3)0.75, which has the minimum phonon thermal conductivity in the case of melt growth.


(Received 2016/05/13; Accepted 2016/09/20; Published 2016/11/25)

Keywords: eco-materials, powder metallurgy, mass difference scattering, grain boundary scattering

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. H. Scherrer and S. Scherrer: Thermoelectric Handbook: macro to nano, ed. D. M. Rowe, (CRC press, Taylor & Francis Group, Boca Raton, Florida, 2006) Ch.27.
  2. Kinichi Uemura and Isao Nishida: Thermoelectric Semiconductor and its Applications (Nikkankougyou Shinbunsha, Tokyo, 1988) pp. 169, 196.
  3. M. Stordeur: CRC Handbook of Thermoelectrics ed. D. M. Rowe, (CRC press, Taylor & Francis Group, Boca Raton, Florida, 1995) pp. 241
  4. B. A. Cook and J. L. Harringa: Thermoelectric Handbook: macro to nano, edit by D. M. Rowe, (CRC press, Taylor & Francis Group, Boca Raton, Florida, 2006) Ch.19.
  5. G. S. Nolas, J. Sharp and H. J. Goldsmid: Thermoelectrics Basic Principles and New Materials Development, (Springer-Verlag, Berlin Heidelberg, 2001) pp. 113-114, 125-128.
  6. B. Abeles: Phys. Rev. 131 (1963) 1906-1911.
  7. T. M. Tritt (ed.): Thermal Conductivity Theory, Properties, and Applications, (Kluwer Academic/Plenum Publishers, New York, 2004) pp.9-17, 124-125.
  8. K. Hasezaki, M. Nishimura, M. Umata, H. Tsukuda and M. Araoka: Mater. Trans., JIM 35 (1994) 428-432.
  9. P. Pierrat, A. Dauscher, B. Lenoir, R. Martin-Lopez and H. Scherrer: J. Mater. Sci. 32 (1997) 3653-3657.
  10. K. Hasezaki, T. Hamachiyo, M. Ashida, T. Ueda and Y. Noda: Mater. Trans. 51 (2010) 863-867.
  11. T. Hamachiyo, M. Ashida, K. Hasezaki, H. Matsunoshita, M. Kai and Z. Horita: Mater. Trans. 50 (2009) 1592-1595.
  12. L.P. Bulat, V.T. Bublik, I.A. Drabkin, V.V. Karataev, V.B. Osvenskii, Y.U.N. Parkhomenko, G.I. Pivovarov, D.A. Pshenai-Severin and N.Y.U. Tabachkova: J. Electron. Mater. 39 (2010) 1650-1653.
  13. L. Xue-Dong and Y.H. Park: Mater. Trans. 43 (2002) 681-687.
  14. M. Orihashi, Y. Noda, K. Hasezaki: Proc. 2007 Int. Conf. on Thermoelectrics, (IEEE, Cheju, Korea, 2007) pp.95-98.
  15. G.E. Lee, I.H. Kim, S.M. Choi, Y.S. Lim, W.S. Seo, J.S. Park and S.H. Yang: J. Korean Phys. Soc. 65 (2014) 2066-2070.
  16. X.A. Fan, J.Y. Yang, R.G. Chen, H.S. Yun, W. Zhu, S.Q. Bao and X.K. Duan: J. Phys. D 39 (2006) 740-745.
  17. L.P. Hu, T.J. Zhu, Y.G. Wang, H.H. Xie, Z.J. Xu and X.B. Zhao: NPG Asia Materials 6 (2014) e88.
  18. F.K. Lotgering: J. Inorg. Nucl. Chem. 9 (1959) 113-123.
  19. M.M. Stasova and N.H. Abrikosov: Izv. Akad. Nauk SSSR, Neorg. Mater. 6 (1970) 1090.
  20. M. Fusa, N. Yamamoto and K. Hasezaki: Mater. Trans. 55 (2014) 942-946.
  21. K. Hasezaki, S. Wakazuki, T. Fujii and M. Kitamura: Mater. Trans. 57 (2016) 1001-1005.
  22. T. Hamachiyo, M. Ashida and K. Hasezaki: J. Jpn. Inst. Met. Mater. 73 (2009) 491-494.
  23. M. Aoki and Y. Suge: J. Phys. Soc. Jpn. 29 (1960) 363-370.
  24. L.D. Ivanova and Y.V. Granatkina: Inorg. Mater. 36 (2000) 672-677.
  25. D.L. Greenaway and G. Harbeke: J. Phys. Chem. Solids 26 (1965) 1585-1604.
  26. Otfried Madelung: Semiconductors: Data Handbook, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 2003) pp. 624, 630.


© 2016 The Japan Institute of Metals and Materials
Comments to us :