Materials Transactions Online

Materials Transactions, Vol.57 No.12 (2016) pp.2060-2064
© 2016 The Japan Institute of Metals and Materials

Effect of Heat Treatment and the Fabrication Process on Mechanical Properties of Zr-14Nb Alloy

Ryota Kondo1, Naoyuki Nomura2, Hisashi Doi3, Hiroaki Matsumoto4, Yusuke Tsutsumi3 and Takao Hanawa3

1Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
2Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
3Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
4Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, Takamatsu 760-8521, Japan

The microstructure and mechanical properties of thermomechanically processed Zr-14Nb alloy with low magnetic susceptibility were investigated in this study. The stress-strain curves of Zr-14Nb alloy were classified as higher or lower work-hardening types depending on the thermomechanical process. Serration was observed in curves of the higher work-hardening type. SEM-EBSD analysis indicated that {332}<113> twinning should form at the bands that appear after tensile testing. On the other hand, no serration appeared in the lower hardening rate curves. The mechanical properties of centrifugally cast Zr-14Nb alloy with a lower work-hardening rate possessed moderate tensile strength and high elongation because of the formation of the isothermal ω phase during cooling after centrifugal casting, although the tensile strength was increased and the elongation was decreased with increase of the isothermal ω phase formed after aging. The magnetic susceptibilities of thermomechanically processed Zr-14Nb alloys were still one-third lower than those of Ti-6Al-7Nb. Accordingly, the mechanical properties of Zr-14Nb can be controlled by thermomechanical processing while keeping low magnetic susceptibility.


(Received 2016/06/01; Accepted 2016/08/29; Published 2016/11/25)

Keywords: zirconium-niobium alloy, thermomechanical treatment, mechanical properties, stress-strain curve, work-hardening exponent, magnetic susceptibility

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. D. Vuyst, F. Vanhoenacker, J. Gielen, A. Bernaerts and A.M. De Schepper: Eur. Radiol. 13 (2003) 1809-1819.
  2. T.M. Hudson, D.J. Hamlin, W.F. Enneking and H. Pettersson: Skeletal Radiol. 13 (1985) 134-146.
  3. T. Schulz, R.B. Tröbs, J.P. Schneider, W. Hirsch, S. Puccini, F. Schmidt and T. Kahn: Eur. J. Radiol. 53 (2005) 57-66.
  4. R.J. Hodgson: Orthopaedics and Trauma 25 (2011) 119-130.
  5. J.M. Elison, V.L. Leggitt, M. Thomson, U. Oyoyo and N.D. Wycliffe: Am. J. Orthod. Dentofacial Orthop. 134 (2008) 563-572.
  6. M.A. Brown, J.A. Carden, R. Edward Coleman, R. McKinney Jr and L.D. Spicer: Magn. Reson. Imaging 5 (1987) 443-453.
  7. H. Imai, Y. Tanaka, N. Nomura, Y. Tsutsumi, H. Doi, Z. Kanno, K. Ohno, T. Ono and T. Hanawa: Acta Biomater. 9 (2013) 8433-8439.
  8. Y. Popowski, E. Hiltbrand, D. Joliat and M. Rouzaud: Int. J. Radiat. Oncol. Biol. Phys. 47 (2000) 759-765.
  9. N. Nomura, Y. Tanaka, Suyalatu, R. Kondo, H. Doi, Y. Tsutsumi, and T. Hanawa: Mater. Trans. 50 (2009) 2466-2472.
  10. Suyalatu, N. Nomura, K. Oya, Y. Tanaka, R. Kondo, H. Doi, Y. Tsutsumi, and T. Hanawa: Acta Biomater. 6 (2010) 1033-1038.
  11. N. Nomura, In Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions, ed. M. Niinomi, T. Narushima, and M. Nakai (2015) 215-221.
  12. R. Kondo, N. Nomura, Suyalatu, Y. Tsutsumi, H. Doi, and T. Hanawa: Acta Biomater. 7 (2011) 4278-4284.
  13. R. Kondo, R. Shimizu, N. Nomura, H. Doi, Suyalatu, Y. Tsutsumi, K. Mitsuishi, M. Shimojo, K. Noda, and T. Hanawa: Acta Biomater. 9 (2013) 5795-5801.
  14. S.K. Sikka, Y.K. Vohra and R. Chidambaram: Prog. Mater. Sci. 27 (1982) 245-310.
  15. S. Uehara, T. Suzuki and H. Kimura: Trans. JIM 27 (1986) 830-841.
  16. B.A. Cheadle and S.A. Aldridge: J. Nucl. Mater. 47 (1973) 255-258.
  17. D.J. Cometto, G.L.J. Houze and R.F. Hehemann: Trans. Metall. AIME 233 (1965) 30-39.
  18. G.M. Benites and A. Fernández Guillermet: J. Alloy. Compd. 302 (2000) 192-198.
  19. A. Russell and K. L. Lee: Structure-Property Relations in Nonferrous Metals, John Wiley & Sons, Inc., Hoboken, NJ (2005).
  20. S. Hanada, M. Ozeki and O. Izumi: Metall. Mater. Trans., A 16 (1985) 789-795.
  21. L.M. Hsiung and D.H. Lassila: Acta Mater. 48 (2000) 4851-4865.
  22. R.J. Talling, R.J. Dashwood, M. Jackson and D. Dye: Acta Mater. 57 (2009) 1188-1198.
  23. M.J. Lai, C.C. Tasan and D. Raabe: Acta Mater. 100 (2015) 290-300.
  24. S. Hanada and O. Izumi: Metall. Mater. Trans., A 18 (1987) 265-271.
  25. S. Hanada and O. Izumi: J. Mater. Sci. 21 (1986) 4131-4139.
  26. S. Hanada, T. Yoshio and O. Izumi: Trans. JIM 27 (1986) 496-503.


© 2016 The Japan Institute of Metals and Materials
Comments to us :