Materials Transactions Online

Materials Transactions, Vol.57 No.12 (2016) pp.2015-2019
© 2016 The Japan Institute of Metals and Materials

Micro Arc Oxidation of Ti-15Zr-7.5Mo Alloy

Yusuke Tsutsumi1, Maki Ashida1, Kei Nakahara2, Ai Serizawa2, Hisashi Doi1, Carlos Roberto Grandini3, Luís Augusto Rocha3 and Takao Hanawa1

1Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
2Department of Materials Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
3UNESP-Universidade Estadual Paulista, Bauru, SP, Brazil

Ti-15Zr-7.5Mo alloy was melted and its structure and mechanical properties were evaluated, followed by micro-arc oxidation (MAO) treatment to add bioactivity. Melted Ti-15Zr-7.5Mo alloy was consisted of mainly β containing of metastable α'' and ω phases. The Vickers hardness of the alloy was 420 HV and larger than those of Ti-6Al-4V alloy (320 HV) and Ti-29Nb-13Ta-4.6Zr ally (TNTZ) (180 HV). The Young's modulus of the alloy was about 104-112 GPa and almost the same as that of Ti-6Al-4V alloy (113 GPa) and larger than that of TNTZ (80 GPa). The MAO treatment was performed in a mixed electrolyte of 0.1-mol L−1 calcium glycerophosphate and 0.15-mol L−1 calcium acetate with a positive maximum voltage of 400 V and a 31.2 mA cm−2 for 600 s. Porous composite oxide of Ti, Zr, and Mo containing large amounts of Ca and P was formed on Ti-15Zr-7.5Mo alloy by micro arc oxidation (MAO) treatment. Zr was preferentially enriched and Ti and Mo were depleted in the oxide layer. Pore size was larger than that of CP Ti. The ability of calcium phosphate formation of the alloy in Hanks' solution after MAO treatment was less than those of CP Ti and TNTZ. It is necessary for the alloy to conduct a chemical treatment to accelerate bone formation.


(Received 2016/05/27; Accepted 2016/07/29; Published 2016/11/25)

Keywords: β-type titanium alloy, structure, mechanical property, micro arc oxidation, bioactivity

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. K. Wang, L. Gustavson and J. Dumbleton: in Froes F H and Caplan H L eds., Titanium '92: Science and Technology, (Warrenda, TMS, 1993) pp. 2697-2704.
  2. L. D. Zardiackas, D. W. Mitchell and J. A. Disegi: (1996): in Browns S A and Lemons J E eds., Medical Applications of Titanium and Its Alloys, (West Conshohoken, PA, ASTM, 1996) pp. 60-75.
  3. J. C. Fanning: in Blenkinsop P A, Evans W J and Flower H eds., Titanium '95: Science and Technology, cambridge, The University Press, 1996) pp. 1800-1807.
  4. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mater. Sci. Eng. A 243 (1988) 244-249.
  5. T. Ozaki, H. Matsumoto, S. Watanabe and S. Hanada: Mater. Trans. 45 (2004) 2776-2779.
  6. D. R. N. Correa, F. B. Vicente, R. O. Araújo, M. L. Lourenço, P.o A. B. Kuroda, M. A. R. Buzalaf and C. R. Grandini: J. Mater. Res. Technol.
  7. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey: Surf. Coat. Tech. 122 (1999) 73-93.
  8. H. Ishizawa and M. Ogino: J. Biomed. Mater. Res. 29 (1995) 65-72.
  9. H. Ishizawa and M. Ogino: J. Biomed. Mater. Res. 29 (1995) 1071-1079.
  10. Y.T. Sul, C.B. Johansson, Y. Jeong and T. Albrektsson: Med. Eng. Phys. 23 (2001) 329-346.
  11. Y.T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg and T. Albrektsson: Biomaterials 23 (2002) 491-501.
  12. M. Fini, A. Cigada, G. Rondelli, R. Chiesa, R. Giardino, G. Giavaresi, N.N. Aldini, P. Torricelli and B. Vicentini: Biomaterials 20 (1999) 1587-1594.
  13. G. Giavaresi, M. Fini, A. Cigada, R. Chiesa, G. Rondelli, L. Rimondini, P. Torricelli, N.N. Aldini and R. Giardino: Biomaterials 24 (2003) 1583-1594.
  14. Y.T. Sul, C.B. Johansson, Y. Jeong, K. Röser, A. Wennerberg and T. Albrektsson: J. Mater. Sci. Mater. Med. 12 (2001) 1025-1031.
  15. Y.T. Sul: Biomaterials 24 (2003) 3893-3907.
  16. H.E. Kim, S.J. Heo and J.Y. Koak: Biomaterials 25 (2004) 2867-2875.
  17. W. Ma, J.H. Wei, Y.Z. Li, X.M. Wang, H.Y. Shi, S. Tsutsumi and D.H. Li: J. Biomed. Mater. Res. B Appl. Biomater. 86B (2008) 162-169.
  18. Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura and T. Hanawa: Appl. Surf. Sci. 262 (2012) 34-38.
  19. L.T. Duarte, C. Bolfarini, S.R. Biaggio, R.C. Rocha-Filho and P.A.P. Nascente: Mater. Sci. Eng. C 41 (2014) 343-348.
  20. J. Wu, Z.M. Liu, X.H. Zhao, Y. Gao, J. Hu and B. Gao: J. Biomed. Mater. Res. B Appl. Biomater. 92B (2010) 298-306.
  21. Y. Ohmori, T. Ogo, K. Nakai and S. Kobayashi: Mater. Sci. Eng. A 312 (2001) 182-188.
  22. X. Min, S. Emura, L. Zhang, K. Tsuzaki and K. Tsuchiya: Mater. Sci. Eng. A 646 (2015) 279-287.
  23. M. Nyan, Y. Tsutsumi, K. Oya, H. Doi, N. Nomura, S. Kasugai and T. Hanawa: Dent. Mater. J. 30 (2011) 754-761.
  24. T. Hanawa, O. Okuno and H. Hamanaka: J. Jpn. Inst. Metals 56 (1992) 1168-1173.
  25. J.-Y. Ha, Y. Tsutsumi, H. Doi, N. Nomura, K.-H. Kim and T. Hanawa: Surf. Coat. Tech. 205 (2011) 4948-4955.
  26. Y.T. Sul: Biomaterials 24 (2003) 3893-3907.


© 2016 The Japan Institute of Metals and Materials
Comments to us :