Materials Transactions Online

Materials Transactions, Vol.57 No.12 (2016) pp.2008-2014
© 2016 The Japan Institute of Metals and Materials

Fabrication of TiO2/SiO2 Composite Coating via a High-Temperature Self-Organizing Microporous TiO2 Layer on Ti

Eri Miura-Fujiwara1, 2, Yoshinobu Tanaka2, Hiroshi Harada1, Takeyuki Kikuchi2, 3 and Thoru Yamasaki1, 2

1Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 761-2280, Japan
2Faculty of Materials Science and Chemistry, School of Engineering, University of Hyogo, Himeji 761-2280, Japan
3Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo, Himeji 761-2280, Japan

We studied the fabrication of a TiO2/SiO2 composite coating on Ti. At a temperature above 1100 K with oxygen partial pressure, a self-organized coating of rutile phase TiO2 is formed on a Ti substrate. The thick TiO2 coating (> 10 μm) had a “piecrust-like” multilayer structure, which comprise TiO2 monolayers and gaps. A composite coating containing SiO2 was fabricated via a sol-gel method in vacuum to improve the exfoliation strength of the brittle, porous TiO2 coating. Cross-sectional SEM images revealed sufficient amounts of SiO2 in the gaps between the TiO2 monolayers in the TiO2/SiO2 composite coating, even at the interface between the oxide coating and the substrate. Exfoliation stress of the composite coating was up to 10-15 times higher than for the self-organized TiO2 coating alone, and the composite coating's failure mode was interfacial compared with cohesive for the self-organized TiO2 coating.

[doi:10.2320/matertrans.MI201509]

(Received 2016/06/08; Accepted 2016/09/13; Published 2016/11/25)

Keywords: titanium (Ti), titanium dioxide, vacuum sol-gel method, composite material, dental material

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. E. Miura, L. Jie, I. Watanabe, Y. Tanaka, T. Shiraishi and K. Hisatsune: J. Jpn. Inst. Metals 65 (2001) 819-822.
  2. E. Miura, T. Tabaru, J. Liu, Y. Tanaka, T. Shiraishi and K. Hisatsune: Mater. Trans. 45 (2004) 3044-3049.
  3. E. Miura-Fujiwara, S. Yamada, A. Obata, H. Sato, Y. Watanabe, T. Kasuga and M. Niinomi: Proc. Ti-2011, ed. by L. Zhou, et al., Science Press Beijing, Beijing China, (2012) pp. 2116-2120.
  4. E. Miura-Fujiwara, K. Mizushima, S. Yamada, Y. Watanabe, T. Kasuga, M. Niinomi and T. Yamasaki: Proc. PRICM-8, ed. by F. D. S. Marquis, Willey, NJ USA, (2013) pp. 1543-1550.
  5. E. Miura-Fujiwara, K. Mizushima, Y. Watanabe, T. Kasuga and M. Niinomi: Jpn. J. Appl. Phys. 53 (2014) 11RD02.
  6. A. Obata, E. Miura-Fujiwara, A. Shimizu, H. Maeda, M. Nakai, Y. Watanabe, M. Niinomi and T. Kasuga: Adv. Mater. Sci. Eng. (2013) ID501621.
  7. D. Wang and G.P. Bierwagen: Prog. Org. Coat. 64 (2009) 327-338.
  8. C.J. Brinker, D.R. Tallant, E.P. Roth and C.S. Ashley: J. Non-Cryst. Solids 82 (1986) 117-126.
  9. S.L. Chong, D. Wang, J.D. Hayes, B.W. Wilhite and A. Malik: Anal. Chem. 69 (1997) 3889-3898.
  10. M. Guglielmi: J. Sol-Gel Sci. Technol. 8 (1997) 443-449.
  11. U. Eduok, R. Suleiman, M. Khaled and R. Akid: Prog. Org. Coat. 93 (2016) 97-108.
  12. W. Shang, B. Chen, X. Shi, Y. Chen and X. Xiao: J. Alloy. Compd. 474 (2009) 541-545.
  13. M. Zaharescu, L. Predoana, A. Barau, D. Raps, F. Gammel, N.C. Rosero-Navarro, Y. Castro, A. Durán and M. Aparicio: Corros. Sci. 51 (2009) 1998-2005.
  14. W. Shiba, M. Uno, H. Ishigami and M. Kurachi: The journal of Gifu Dental Society 35 (2009) 149-159.
  15. A. Hasegawa, A. Motonomi, I. Ikeda and S. Kawaguchi: Color Res. Appl. 25 (2000) 43.
  16. C. D. Wagner and G. E. Muilenberg: Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn., (1979).
  17. E.J.A. Pope and J.D. Mackenzie: J. Non-Cryst. Solids 87 (1986) 185-198.
  18. K.C. Chen, T. Tsuchiya and J.D. Mackenzie: J. Non-Cryst. Solids 81 (1986) 227-237.
  19. C.R. Silva and C. Airoldi: J. Colloid Interface Sci. 195 (1997) 381-387.
  20. S. Sakka: Science of sol-gel method —Low-temperature synthesis for functional glass and ceramics—, Agne Shofu Co. Ltd., Tokyo, (1988), pp. 54-84.


[JIM HOME] [JOURNAL ARCHIVES]

© 2016 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp