Materials Transactions Online

Materials Transactions, Vol.57 No.12 (2016) pp.2008-2014
© 2016 The Japan Institute of Metals and Materials

Fabrication of TiO2/SiO2 Composite Coating via a High-Temperature Self-Organizing Microporous TiO2 Layer on Ti

Eri Miura-Fujiwara1, 2, Yoshinobu Tanaka2, Hiroshi Harada1, Takeyuki Kikuchi2, 3 and Thoru Yamasaki1, 2

1Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 761-2280, Japan
2Faculty of Materials Science and Chemistry, School of Engineering, University of Hyogo, Himeji 761-2280, Japan
3Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo, Himeji 761-2280, Japan

We studied the fabrication of a TiO2/SiO2 composite coating on Ti. At a temperature above 1100 K with oxygen partial pressure, a self-organized coating of rutile phase TiO2 is formed on a Ti substrate. The thick TiO2 coating (> 10 μm) had a “piecrust-like” multilayer structure, which comprise TiO2 monolayers and gaps. A composite coating containing SiO2 was fabricated via a sol-gel method in vacuum to improve the exfoliation strength of the brittle, porous TiO2 coating. Cross-sectional SEM images revealed sufficient amounts of SiO2 in the gaps between the TiO2 monolayers in the TiO2/SiO2 composite coating, even at the interface between the oxide coating and the substrate. Exfoliation stress of the composite coating was up to 10-15 times higher than for the self-organized TiO2 coating alone, and the composite coating's failure mode was interfacial compared with cohesive for the self-organized TiO2 coating.


(Received 2016/06/08; Accepted 2016/09/13; Published 2016/11/25)

Keywords: titanium (Ti), titanium dioxide, vacuum sol-gel method, composite material, dental material

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. E. Miura, L. Jie, I. Watanabe, Y. Tanaka, T. Shiraishi and K. Hisatsune: J. Jpn. Inst. Metals 65 (2001) 819-822.
  2. E. Miura, T. Tabaru, J. Liu, Y. Tanaka, T. Shiraishi and K. Hisatsune: Mater. Trans. 45 (2004) 3044-3049.
  3. E. Miura-Fujiwara, S. Yamada, A. Obata, H. Sato, Y. Watanabe, T. Kasuga and M. Niinomi: Proc. Ti-2011, ed. by L. Zhou, et al., Science Press Beijing, Beijing China, (2012) pp. 2116-2120.
  4. E. Miura-Fujiwara, K. Mizushima, S. Yamada, Y. Watanabe, T. Kasuga, M. Niinomi and T. Yamasaki: Proc. PRICM-8, ed. by F. D. S. Marquis, Willey, NJ USA, (2013) pp. 1543-1550.
  5. E. Miura-Fujiwara, K. Mizushima, Y. Watanabe, T. Kasuga and M. Niinomi: Jpn. J. Appl. Phys. 53 (2014) 11RD02.
  6. A. Obata, E. Miura-Fujiwara, A. Shimizu, H. Maeda, M. Nakai, Y. Watanabe, M. Niinomi and T. Kasuga: Adv. Mater. Sci. Eng. (2013) ID501621.
  7. D. Wang and G.P. Bierwagen: Prog. Org. Coat. 64 (2009) 327-338.
  8. C.J. Brinker, D.R. Tallant, E.P. Roth and C.S. Ashley: J. Non-Cryst. Solids 82 (1986) 117-126.
  9. S.L. Chong, D. Wang, J.D. Hayes, B.W. Wilhite and A. Malik: Anal. Chem. 69 (1997) 3889-3898.
  10. M. Guglielmi: J. Sol-Gel Sci. Technol. 8 (1997) 443-449.
  11. U. Eduok, R. Suleiman, M. Khaled and R. Akid: Prog. Org. Coat. 93 (2016) 97-108.
  12. W. Shang, B. Chen, X. Shi, Y. Chen and X. Xiao: J. Alloy. Compd. 474 (2009) 541-545.
  13. M. Zaharescu, L. Predoana, A. Barau, D. Raps, F. Gammel, N.C. Rosero-Navarro, Y. Castro, A. Durán and M. Aparicio: Corros. Sci. 51 (2009) 1998-2005.
  14. W. Shiba, M. Uno, H. Ishigami and M. Kurachi: The journal of Gifu Dental Society 35 (2009) 149-159.
  15. A. Hasegawa, A. Motonomi, I. Ikeda and S. Kawaguchi: Color Res. Appl. 25 (2000) 43.
  16. C. D. Wagner and G. E. Muilenberg: Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn., (1979).
  17. E.J.A. Pope and J.D. Mackenzie: J. Non-Cryst. Solids 87 (1986) 185-198.
  18. K.C. Chen, T. Tsuchiya and J.D. Mackenzie: J. Non-Cryst. Solids 81 (1986) 227-237.
  19. C.R. Silva and C. Airoldi: J. Colloid Interface Sci. 195 (1997) 381-387.
  20. S. Sakka: Science of sol-gel method —Low-temperature synthesis for functional glass and ceramics—, Agne Shofu Co. Ltd., Tokyo, (1988), pp. 54-84.


© 2016 The Japan Institute of Metals and Materials
Comments to us :