Materials Transactions Online

Materials Transactions, Vol.57 No.12 (2016) pp.2002-2007
© 2016 The Japan Institute of Metals and Materials

Preparation and In Vivo Study of Porous Titanium-Polyglycolide Composite

Masato Ueda1, Nobuyuki Hayashi2, Yuri Nakano3, Masahiko Ikeda1, Kenji Doi4, Shigeo Mori4, Hisashi Kitagaki4, Shuntaro Terauchi4 and Azusa Seki5

1Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
2Graduate School of Science and Engineering, Kansai University, Suita 564-8680, Japan
3Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
4Osaka Yakin Kogyo Co., Ltd., Osaka 533-0005, Japan
5Hamri Co., Ltd., Koga 306-0101, Japan

Porous materials show low Young's moduli and excellent bonding to living bone. However, the strength of such materials is often insufficient in the initial stage of implantation. Thus, the objective of this study was to increase the strength of porous titanium by filling the pores with polyglycolide (PGA), a biodegradable plastic. PGA powder was prepared via the thermal decomposition of sodium chloroacetate at 433 K. The PGA was then introduced into the pores of porous Ti (porosity: 60%) using two methods: (i) centrifugal packing and heating and (ii) heat injection. In the latter method, almost all pores were filled by PGA; the filling fraction was measured to be 65-85% regardless of the injection temperature. When the pores in the porous Ti were filled with PGA, the compressive strength increased drastically from 40 to 100 MPa. The increased strength is comparable to that of cortical bone. In addition, the strength increased with increasing injection temperature. In an animal test, unfavourable autopsy findings, such as suppuration, bleeding, and hyperplasia of the connective tissue, could not be confirmed in rats and no bone was observed in the pores of the Ti-PGA composite. Decomposition of PGA lowered the surrounding pH, it was found to inhibit bone formation in the pores of the porous Ti. It is important to control the decomposition rate of PGA.


(Received 2016/03/28; Accepted 2016/05/27; Published 2016/11/25)

Keywords: titanium, porous devices, biodegradable plastics, compressive strength, bone ingrowth

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato and M. Niinomi: J. Mater. Sci. Mater. Med. 19 (2008) 1581-1586.
  2. M. Niinomi, M. Nakai and J. Hieda: Acta Biomater. 8 (2012) 3888-3903.
  3. T. Ahmed, M. Long, J. Silvestri, C. Ruiz and H.J. Rack: in Titanium'95: Science and Technology, P.A. Blenkinsop, W.J. Evans and H.M. Flower, eds., The Institute for Materials, Birmingham, UK (1996). pp. 1760-1767.
  4. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mater. Sci. Eng. A 243 (1998) 244-249.
  5. N. Nomura, T. Kohama, I.H. Oh, S. Hanada, A. Chiba, M. Kanehira and K. Sasaki: Mater. Sci. Eng. C 25 (2005) 330-335.
  6. C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino and T. Asahina: Scr. Mater. 45 (2001) 1147-1153.
  7. I.K. Oh, N. Nomura and S. Hanada: Mater. Trans. 43 (2002) 443-446.
  8. H. Li, S.M. Oppenheimer, S.I. Stupp, D.C. Dunand and L.C. Brinson: Mater. Trans. 45 (2004) 1124-1131.
  9. M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo and T. Nakamura: Biomaterials 30 (2005) 6014-6023.
  10. J. Braunecker, M. Baba, G.E. Milroy and R.E. Cameron: Int. J. Pharm. 282 (2004) 19-34.
  11. O. Herzberg, R. Gehrke and M. Epple: Polymer 40 (1999) 507-511.
  12. M. Epple and O. Herzberg: J. Mater. Chem. 7 (1997) 1037-1042.
  13. K. Schwarz and M. Epple: Macromol. Chem. Phys. 200 (1999) 2221-2229.
  14. M. Epple and H. Kirschnick: Chem. Ber. 129 (1996) 1123-1129.
  15. M. Epple and O. Herzberg: J. Biomed. Mater. Res. (Appl. Biomater.) 43 (1998) 83-88.
  16. M. Epple and L. Tröger: J. Chem. Soc., Dalton Trans. (1996) 11-16.
  17. K. Schwarz and M. Epple: J. Phys. Chem. B 106 (2002) 10764-10770.
  18. L. Elizabé, B.M. Kariuki, K.D.M. Harris, M. Tremayne, M. Epple and J.M. Thomas: J. Phys. Chem. B 101 (1997) 8827-8831.
  19. A.A. Ignatius and L.E. Claes: Biomaterials 17 (1996) 831-839.
  20. K.D.M. Harris and E.Y. Cheung: Chem. Soc. Rev. 33 (2004) 526-538.
  21. M. Ueda, R. Matsunaga, M. Ikeda and M. Ogawa: Mater. Trans. 49 (2008) 1706-1709.
  22. M. Ueda, M. Ikeda and M. Ogawa: Mater. Sci. Eng. C 29 (2009) 994-1000.
  23. Y. Chatani, K. Suehiro, Y. Okita, H. Tadokoro and K. Chujo: Makromol. Chem. 113 (1968) 215-229.
  24. J. Liuyun, X. Chengdong, J. Lixin, C. Dongliang and L. Qing: Mater. Res. Bull. 48 (2013) 1233-1238.
  25. C. Migliaresi, A.D. Lollis, L. Fambri and D. Cohn: Clin. Mater. 8 (1991) 111-118.
  26. N. Fukuda, H. Tsuji and Y. Ohnishi: Polym. Degrad. Stabil. 78 (2002) 119-127.
  27. M. Jayabalan, K.T. Shalumon, M.K. Mitha, K. Ganesan and M. Epple: Acta Biomater. 6 (2010) 763-775.
  28. Y.S. Liu, Q.L. Huang, A. Kienzle, W.E.G. Müller and Q.L. Feng: Mater. Sci. Eng. C 38 (2014) 227-234.
  29. W.S. Rasband, J Image, U. S. National Institutes of Health, Bethesda, Maryland, USA,, (1997-2012).
  30. C.A. Schneider, W.S. Rasband and K.W. Eliceiri: Nat. Methods 9 (2012) 671-675.
  31. H. Cao and N. Kuboyama: Bone 46 (2010) 386-395.


© 2016 The Japan Institute of Metals and Materials
Comments to us :