Materials Transactions Online

Materials Transactions, Vol.57 No.12 (2016) pp.1998-2001
© 2016 The Japan Institute of Metals and Materials

Anisotropy of Young's Modulus in a Ti-Mo-Al-Zr Alloy with Goss Texture

Yuri Shinohara1, 2, Daiki Narita, Masaki Tahara1, 2, Hideki Hosoda1, 2 and Tomonari Inamura1, 2

1Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan
2Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Anisotropy of the Young's modulus and microstructure of a recrystallized β Ti-Mo-Al-Zr alloy with a Goss texture were investigated. Specimens were solution-treated at 1173 K for 3.6 ks after cold rolling with a reduction rate of 99%. The {011}<100> Goss recrystallization texture developed as a major texture component. The Young's modulus was evaluated by tensile tests using a strain gage method. Anisotropy of the Young's modulus depending on the loading direction was observed: The lowest and highest values of the Young's modulus were 44 and 77 GPa, respectively. The compliance anisotropy factor, J, and the characteristic modulus, S11, of the alloy were calculated from the measured Young's moduli and the volume fractions of the texture components.


(Received 2016/05/02; Accepted 2016/07/15; Published 2016/11/25)

Keywords: texture, Young's modulus, biomaterials, titanium alloy

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. Niinomi: Sci. Technol. Adv. Mater. 4 (2003) 445.
  2. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mater. Sci. Eng. A 243 (1998) 244-249.
  3. M. Niinomi: Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 33 (2002) 477-486.
  4. M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi and H. Nakajima: Acta Mater. 56 (2008) 2856-2863.
  5. K. Hiramatsu, M. Tahara, T. Inamura, H. Hosoda, S. Miyazaki: Effect of cold-rolling rate on texture in Ti-Mo-Al-Zr Shape memory alloy, in: Mater. Sci. Forum, Trans Tech Publ, (2013), pp. 262-266.
  6. T. Inamura, Y. Kinoshita, J.I. Kim, H.Y. Kim, H. Hosoda, K. Wakashima and S. Miyazaki: Mater. Sci. Eng. A 438-440 (2006) 865-869.
  7. H.Y. Kim, T. Sasaki, K. Okutsu, J.I. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Acta Mater. 54 (2006) 423-433.
  8. F.-W. Ling, E.A. Starke and B.G. Lefevre: Metall. Trans. 5 (1974) 179-187.
  9. Y.F. Xu, D.Q. Yi, H.Q. Liu, X.Y. Wu, B. Wang and F.L. Yang: Mater. Sci. Eng. A 547 (2012) 64-71.
  10. H. Tobe, H.Y. Kim and S. Miyazaki: J. Japan Inst. Metals 72 (2008) 965-969.
  11. S. Dai, Y. Wang, F. Chen, X. Yu and Y. Zhang: Mater. Sci. Eng. A 575 (2013) 35-40.
  12. Y. Yang, P. Castany, M. Cornen, I. Thibon, F. Prima and T. Gloriant: J. Alloy. Compd. 591 (2014) 85-90.
  13. T. Sasaki, K. Hiramatsu, M. Tahara, H. Hosoda, S. Miyazaki and T. Inamura: Adv. Mat. Res. 922 (2014) 622-625.
  14. D. Narita, Y. Shinohara, M. Tahara, H. Hosoda, T. Inamura: PFAM24 (Processing and Fabrication of Advanced Materials-XXIV) (2016).
  15. H. Hosoda, Y. Kinoshita, Y. Fukui, T. Inamura, K. Wakashima, H.Y. Kim and S. Miyazaki: Mater. Sci. Eng. A 438-440 (2006) 870-874.
  16. J.F. Nye: Physical properties of crystals: their representation by tensors and matrices, (Oxford university press, 1985).
  17. T. Inamura, H. Hosoda, K. Wakashima and S. Miyazaki: Mater. Trans. 46 (2005) 1597-1603.
  18. T. Mura: Micromechanics of defects in solids, (Springer Science & Business Media, 2013).


© 2016 The Japan Institute of Metals and Materials
Comments to us :