Materials Transactions Online

Materials Transactions, Vol.57 No.12 (2016) pp.1986-1992
© 2016 The Japan Institute of Metals and Materials

Elastic Properties of As-Solidified Ti-Zr Binary Alloys for Biomedical Applications

Takanobu Shiraishi1, Kunio Yubuta2, Toetsu Shishido3 and Nobuya Shinozaki4

1Department of Dental and Biomedical Materials Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
3New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
4Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan

Young's modulus (E), shear modulus (G), bulk modulus (K) and Poisson's ratio (ν) of Ti-Zr binary alloys containing 20, 40, 50, 60, 70 and 80 at% Zr and component pure metals (Ti, Zr) prepared by arc-melting followed by solidification process were determined precisely by ultrasonic sound velocity measurements. X-ray diffraction analysis showed that all the as-solidified alloys and pure metals were with a single-phase structure of the hexagonal close-packed lattice (martensitically formed α′-phase). The alloying addition of Zr to Ti effectively decreased both E and G values with their minimum values of 89.5 ± 1.0 GPa and 33.3 ± 0.4 GPa, respectively, being recorded at the same composition Ti-60 at% Zr. On the other hand, K values decreased slightly when the concentration of Zr was increased from 20 to nearly 50 at% and further increases in Zr concentration did not change K values greatly. The observed variations of Young's modulus with Zr concentration in the entire range of composition were well interpreted in terms of density (ρ), Debye temperature (θD) and concentration of atoms (n) in each alloy. The quantity ρθD2n−2/3 was revealed to be a good measure in predicting the tendency of variations of Young's modulus with composition in this binary system.

[doi:10.2320/matertrans.MI201501]

(Received 2016/01/19; Accepted 2016/04/01; Published 2016/11/25)

Keywords: titanium-zirconium alloy, elastic property, Young's modulus, shear modulus, bulk modulus, ultrasonic sound velocity

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. M. Niinomi: Mater. Sci. Eng. A 243 (1998) 231-236.
  2. S. G. Steinemann: Corrosion of Surgical Implants -- in vivo and in vitro Tests. In: G. D. Winter, J. L. Leray and K. de Groot (eds) Evaluation of Biomaterials, (John Wiley & Sons Ltd, Chichester, 1980) pp. 1-34.
  3. H. Gerber and S. M. Perren: Evaluation of Tissue Compatibility of in vitro Cultures of Embryonic Bone. In: G. D. Winter, J. L. Leray and K. de Groot (eds) Evaluation of Biomaterials, (John Wiley & Sons Ltd, Chichester, 1980) pp. 307-314.
  4. H. Matsuno, A. Yokoyama, F. Watari, M. Uo and T. Kawasaki: Biomaterials 22 (2001) 1253-1262.
  5. Japan Institute of Metals: Metals Data Book 4th edn, (Maruzen Co, Tokyo, 2004) p.10.
  6. J.L. Murray: Phase Diagrams of Binary Titanium Alloys, (ASM International, Metals Park, OH, 1987) pp. 340-345.
  7. D. F. Williams and R. L. Williams: Degradative Effects of the Biological Environment on Metals and Ceramics. In: B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons (eds) Biomaterials Science: An Introduction to Materials in Medicine 2nd edn, (Elsevier Academic Press, Amsterdam, 2004) pp. 430-439.
  8. D. Scharnweber: Degradation (in vitro - in vivo corrosion). In: J. A. Helsen and H. J. Breme (eds) Metals as Biomaterials, (John Wiley & Sons Ltd, Chichester, 1998) pp. 101-151.
  9. M. Long and H.J. Rack: Biomaterials 19 (1998) 1621-1639.
  10. M.J. Bermingham, S.D. McDonald, A.J. Buddery, D.H. StJohn and M.S. Dargusch: Mater. Sci. Eng. C 31 (2011) 1520-1525.
  11. W.-F. Ho, W.-K. Chen, S.-C. Wu and H.-C. Hsu: J. Mater. Sci. Mater. Med. 19 (2008) 3179-3186.
  12. D.R.N. Correa, F.B. Vicente, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf and C.R. Grandini: Mater. Sci. Eng. C 34 (2014) 354-359.
  13. M.Y. Baharuddin, S.H. Salleh, A.A. Suhasril, A.H. Zulkifly, M.H. Lee, M.A. Omar, A.S.A. Kader, A.M. Noor, A.R.A. Harris and N.A. Majid: Artif. Organs 38 (2014) 603-608.
  14. H. Miura: CellCalc, Ver. 2.20 (2012). http://homepage2.nifty.com/~hsc/soft/cellcalc.html. (accessed 2015-02-10)
  15. P.J. Rae, E.N. Brown and E.B. Orler: Polymer 48 (2007) 598-615.
  16. D.A. Fitch, B.K. Hoffmeister and J. de Ana: J. Mater. Sci. 45 (2010) 3768-3777.
  17. B. D. Cullity: Elements of X-ray Diffraction 2nd edn, (Addison-Wesley Publishing Co, Reading, MA, 1978) p. 502.
  18. R.R. Pawar and V.T. Deshpande: Acta Crystallogr. A 24 (1968) 316-317.
  19. J. Goldak, L.T. Lloyd and C.S. Barrett: Phys. Rev. 144 (1966) 478-484.
  20. W. Liu, B. Li, L. Wang, J. Zhang and Y. Zhao: J. Appl. Phys. 104 (2008) 076102.
  21. G. E. Dieter: Mechanical Metallurgy, (McGraw-Hill Book Co, London, 1988) p. 49.
  22. Japan Institute of Metals: Metals Data Book 4th edn, (Maruzen Co, Tokyo, 2004) p. 31.
  23. W. D. Callister Jr.: Materials Science and Engineering: An Introduction, (John Wiley & Sons Inc, New York, 1985) pp. 85-90.
  24. E.S. Fisher, M.H. Manghnani and T.J. Sokolowski: J. Appl. Phys. 41 (1970) 2991-2998.
  25. I.O. Bashkin, V.K. Fedotov, M.V. Nefedova, V.G. Tissen, E.G. Ponyatovsky, A. Schiwek and W.B. Holzapfel: Phys. Rev. B 68 (2003) 054401.
  26. Y.K. Vohra and P.T. Spencer: Phys. Rev. Lett. 86 (2001) 3068-3071.
  27. Y. Zhao, J. Zhang, C. Pantea, J. Qian, L.L. Daemen, P.A. Rigg, R.S. Hixson, G.T. Gray III, Y. Yang, L. Wang, Y. Wang and T. Uchida: Phys. Rev. B 71 (2005) 184119.
  28. B.T. Wang, W.D. Li and P. Zhang: J. Nucl. Mater. 420 (2012) 501-507.
  29. O.L. Anderson: J. Phys. Chem. Solids 24 (1963) 909-917.
  30. M. A. Omar: Elementary Solid State Physics: Principles and Applications, (Addison-Wesley Publishing Co, Reading, MA, 1975) pp. 80-86.
  31. Japan Institute of Metals: Metals Data Book 4th edn, (Maruzen Co, Tokyo, 2004) p. 4.
  32. Q. Chen and B. Sundman: Acta Mater. 49 (2001) 947-961.
  33. N. J. Hallab, J. J. Jacobs and J. L. Katz: Orthopedic Applications. In: B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons (eds) Biomaterials Science: An Introduction to Materials in Medicine 2nd edn, (Elsevier Academic Press, Amsterdam, 2004) pp. 526-555.


[JIM HOME] [JOURNAL ARCHIVES]

© 2016 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp