Materials Transactions Online

Materials Transactions, Vol.55 No.05 (2014) pp.838-841
© 2014 The Japan Institute of Metals and Materials

Molecular Dynamics Simulation of Ga Penetration along Al Grain Boundaries under a Constant Strain Rate Condition

Kayoung Yun and Ho-Seok Nam

School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea

While diverse fracture characteristics have been observed in liquid metal embrittlement (LME) depending on the solid-liquid metal pairs, the penetration of nanometer-thick liquid metal films along the grain boundary has been identified as one of the key mechanisms for embrittlement in many classical LME systems, such as Al-Ga, Cu-Bi and Ni-Bi. For example, liquid Ga quickly penetrates deep into grain boundaries in Al, leading to intergranular fracture under very small stresses. We report on a series of molecular dynamics simulations of liquid Ga in contact with an Al bicrystal under a constant strain rate. We identify the grain boundary dislocations that are nucleated at the grain boundary groove tip and climb down along the grain boundary during Ga penetration and characterize their atomic structures based on topological method.

(Received 2013/12/12; Accepted 2014/02/26; Published 2014/04/25)

Keywords: liquid metal embrittlement (LME), aluminum-gallium, grain boundary penetration, molecular dynamics simulation

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. B. Joseph, M. Picat and F. Barbier: Eur. Phys. J. AP 37 (1999) 875.
  2. R. C. Hugo and R. G. Hoagland: Scr. Mater. 38 (1998) 523.
  3. R. C. Hugo and R. G. Hoagland: Scr. Mater. 41 (1999) 1341.
  4. R. C. Hugo and R. G. Hoagland: Acta Mater. 38 (2000) 1949.
  5. O. Kozlova, A. Rodin, D. Podgornyi and N. Normand: Def. Diff. Forum 237 (2005) 751.
  6. O. Kozlova and A. Rodin: Def. Diff. Forum 249 (2006) 231.
  7. E. Pereiro-López, W. Ludwig, D. Bellet, P. Cloetens and C. Lemaignan: Phys. Rev. Lett. 95 (2005) 215501.
  8. E. Pereiro-López, W. Ludwig and D. Bellet: Acta Mater. 52 (2004) 321.
  9. W. Ludwig, E. Pereiro-López and D. Bellet: Acta Mater. 53 (2005) 151.
  10. E. Pereiro-López, W. Ludwig, D. Bellet and P. Lemaignan: Acta Mater. 54 (2006) 4307.
  11. B. S. Bokstein, L. M. Klinger and I. V. Apikhtina: Mater. Sci. Eng. A 203 (1995) 373.
  12. W. M. Robertson: Trans. Metall. Soc. AIME 236 (1966) 1478.
  13. E. E. Glickman: Z. Metallkd 96 (2005) 1204.
  14. E. Rabkin: Scr. Mater. 39 (1998) 685.
  15. H.-S. Nam and D. J. Srolovitz: Phys. Rev. Lett. 99 (2007) 25501.
  16. H.-S. Nam and D. J. Srolovitz: Phys. Rev. B 76 (2007) 184114.
  17. H.-S. Nam and D. J. Srolovitz: Acta Mater. 57 (2009) 1546.
  18. J. P. Hirth and R. C. Pond: Acta Mater. 44 (1996) 4749.
  19. S. Plimpton: J. Comput. Phys. 117 (1995) 1.
  20. http://lammps.sandia.gov.
  21. S. Namilae, B. Radhakrishnan and J. R. Morris: Model. Simul. Mater. Sci. Eng. 16 (2008) 075001.
  22. A. K. Head: Proc. Phys. Soc. (London) B 66 (1953) 793.


[JIM HOME] [JOURNAL ARCHIVES]

© 2014 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp