Materials Transactions Online

Materials Transactions, Vol.55 No.05 (2014) pp.827-830
© 2014 The Japan Institute of Metals and Materials

Microstructure Observation of Preform for High Performance VGCF/Aluminum Composites

Okyoung Lee1, Moonhee Lee2, Yongbum Choi3, Kenjiro Sugio3, Kazuhiro Matsugi3 and Gen Sasaki3

1Department of Mechanical Science and Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
2Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
3Division of Material and Production Engineering, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

Although carbon nanofibers show high thermal conductivities and excellent mechanical properties, their composites do not show superior properties because the short nanofibers are discontinuous. Casting vapor-grown-carbon-fiber-reinforced pure-aluminum-matrix (VGCF/Al) composites requires a continuous VGCF preform carbon lattice and bridging between the VGCFs. We investigated how heating affected mesophase pitch (MP) crystallization and how the VGCFs affected the MP-bridging between the VGCFs used to fabricated VGCF preform. The as-received MP and MP heated at 793 K were prepared, and the crystallinities of the two MPs were compared. The (002)-plane lattice spacing of the MP heated at 793 K was remarkably decreased. The heated-MP showed higher crystallinity than the as-received MP, indicating that the heating affected the crystallinity of the MP. The preform was prepared by heating a 1 : 9 mixture of VGCFs and MP particles at 793 K for 1 h under vacuum below 40 Pa, and the crystallinities were compared with the heated MP. The preform (002) plane showed narrow lattice spacing comparable to that of heated MP, the preform showed higher crystallinity than the heated MP, indicating that the VGCFs affected the crystallinity of the MP. The MP enclosed rather than bridged the VGCFs. Moreover, the VGCFs were randomly oriented throughout the MP. The microstructures of the VGCF consisted of linear and wavy carbon structures. The fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) analyses indicated that the wavy structure showed dislocation.

(Received 2013/10/16; Accepted 2014/02/28; Published 2014/04/25)

Keywords: carbon/aluminum (C/Al) composite, vapor-grown carbon fiber (VGCF), mesophase pitch (MP), microstructure, transmission electron microscopy (TEM)

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. D. D. L. Chung: Appl. Therm. Eng. 21 (2001) 1593-1605.
  2. C. Zweben: JOM 50 (1998) 47-51.
  3. S. Jin: JOM 50 (1998) 46.
  4. M. H. Lee, Y. B. Choi, K. Sugio, K. Matsugi and G. Sasaki: Sci. Eng. Compos. Mater. 18 (2011) 167-171.
  5. I. Ku: Composite Materials, (New Wun Ching Developmental Publishing Co., Ltd., 2002) pp. 8-15.
  6. K. C. Chang, K. Matsugi, G. Sasaki and O. Yanagisawa: JSME Int. J. 48 (2005) 205-209.
  7. T. P. D. Rajan, R. M. Pillai and B. C. Pal: J. Mater. Sci. 33 (1998) 3491.
  8. J. A. Cornie, S. Zhang, R. Desberg and M. Ryals: Metal Matrix Cast Composites, LLC, (2003).
  9. M. Mizumoto, T. Ohgai and A. Kagawa: Mater. Sci. Eng. 413-414 (2005) 521-526.
  10. R. Ashiri, B. Niroumand, F. Karimzadeh, M. Hamani and M. Pouranvari: J. Alloy. Compd. 475 (2009) 321-327.
  11. Y. B. Choi, G. Sasaki, K. Matsugi and O. Yanagisawa: Mater. Trans. 46 (2005) 2156-2158.
  12. G. G. Tibbetts, M. L. Lake, K. L. Strong and B. P. Rice: Compos. Sci. Tech. 67 (2007) 1709-1718.
  13. E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder and P. Pötschke: Carbon 42 (2004) 1153-1158.
  14. Z. F. Xu, Y. B. Choi, K. Matsugi, D. C. Li and G. Sasaki: Mater. Trans. 51 (2010) 510-515.
  15. Y. Sato, Y. Kikuchi, T. Nakano, G. Okuno, K. Kobayakawa, T. Kawai and A. Yokoyama: J. Power Sources 81-82 (1999) 182-186.
  16. T. Matsumoto: Pure Appl. Chem. 57 (1985) 1553-1562.
  17. K. C. Chang, Z. F. Xu, K. Matsugi and G. Sasaki: Mater. Trans. 50 (2009) 1510-1518.
  18. O. Novaro, M. A. Pacheco-Blas and J. H. Pacheco-Sánchez: Adv. Phys. Chem. 2012 (2012) 720197.
  19. B. P. Lemke and D. Haneman: Phys. Rev. B 17 (1978) 1893-1907.


© 2014 The Japan Institute of Metals and Materials
Comments to us :