Materials Transactions Online

Materials Transactions, Vol.55 No.05 (2014) pp.796-800
© 2014 The Japan Institute of Metals and Materials

Refinement of Nanoporous Copper: A Summary of Micro-Alloying of Au-Group and Pt-Group Elements

Zhenhua Dan1, 2 and Nobuyoshi Hara2

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Department of Materials Science, Tohoku University, Sendai 980-8579, Japan

The micro-alloying of 1 at% metals of Au-Group (Ag, Au) and the Pt-Group (Ni, Pd, Pt) with the Ti60Cu40 amorphous alloy resulted in the formation of fine nanoporous copper (NPC) in the order of 6-28 nm. The smallest characteristic pore size of open-cell nanoporous fcc Cu was 7 and 6 nm after dealloying the amorphous Ti60Cu39Pd1 and Ti60Cu39Pt1 precursor alloys for 43.2 ks in 0.03 M HF solution, while NPC had a pore size of 39 nm after dealloying the amorphous Ti60Cu40 precursor alloy. On the basis of TEM micrographs, the refining factor increased approximately from 4 for the Ti60Cu39Ag1 precursor alloy to 1780 for the Ti60Cu39Pt1 precursor alloy. The refinement was attributed to the dramatic decrease in the surface diffusivity during dealloying. The refinement efficiency of the micro-alloying of the Pt-group elements was higher than that of the Au-group elements. The homogeneous distribution of additives in both of the amorphous precursor alloys and the final stabilized NPCs played a key role in refining the NPCs. This strategy may contribute to the fabrication of cost-effective nanoporous metals with a nanoporosity comparable to that of nanoporous Au, Pd and Pt catalysts.

(Received 2013/12/13; Accepted 2014/02/17; Published 2014/04/25)

Keywords: amorphous materials, porous materials, diffusion, micro-alloying

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. W. B. Liu, S. C. Zhang, N. Li, J. W. Zheng and Y. L. Xing: Microporous Mesoporous Mater. 138 (2011) 1-7.
  2. Z. H. Zhang, Y. Wang, Z. Qi, W. H. Zhang, J. Y. Qin and J. Frenzel: J. Phys. Chem. C 113 (2009) 12629-12636.
  3. Z. H. Dan, F. X. Qin, Y. Sugawara, I. Muto and N. Hara: Intermetallics 29 (2012) 14-20.
  4. J. R. Hayes, A. M. Hodge, J. Biener and A. V. Hamza: J. Mater. Res. 21 (2006) 2611-2616.
  5. L. Y. Chen, J. S. Yu, T. Fujita and M. W. Chen: Adv. Funct. Mater. 19 (2009) 1221-1226.
  6. G. C. Bond and D. T. Thompson: Catal. Rev. Sci. Eng. 41 (1999) 319-388.
  7. J. R. Weissmüller, N. Viswanath, D. Kramer, P. Zimmer, R. Wuerschum and H. Gleiter: Science 300 (2003) 312-315.
  8. J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, A. V. Hamza and F. F. Abraham: Nano Lett. 6 (2006) 2379-2382.
  9. M. Hakamada and M. Mabuchi: J. Alloy. Compd. 485 (2009) 583-587.
  10. Z. Qi, Z. H. Zhang, H. L. Jia, Y. J. Qu, G. D. Liu and X. F. Bian: J. Alloy. Compd. 472 (2009) 71-78.
  11. Z. H. Dan, F. X. Qin, Y. Sugawara, I. Muto and N. Hara: Intermetallics 31 (2012) 157-164.
  12. Z. H. Dan, F. X. Qin, Y. Sugawara, I. Muto and N. Hara: J. Alloy. Compd. 557 (2013) 166-171.
  13. Z. H. Dan, F. X. Qin, Y. Sugawara, I. Muto and N. Hara: Mater. Trans. 54 (2013) 1120-1125.
  14. J. S. Yu, Y. Ding, C. X. Xu, A. Inoue, T. Sakurai and M. W. Chen: Chem. Mater. 20 (2008) 4548-4550.
  15. Z. H. Dan, F. X. Qin, Y. Sugawara, I. Muto and N. Hara: Mater. Trans. 53 (2012) 1765-1769.
  16. Z. H. Dan, F. X. Qin, Y. Sugawara, I. Muto and N. Hara: Microporous Mesoporous Mater. 165 (2013) 257-264.
  17. Z. H. Dan, F. X. Qin, A. Makino, Y. Sugawara, I. Muto and N. Hara: J. Alloy. Compd. 586 (2014) S134-S138.
  18. Z. H. Dan, F. X. Qin, A. Makino, Y. Sugawara, I. Muto and N. Hara: Mater. Lett. 94 (2013) 128-131.
  19. Y. Ding, Y. J. Kim and J. Erlebacher: Adv. Mater. 16 (2004) 1897-1900.
  20. J. Erlebacher: J. Electrochem. Soc. 151 (2004) C614-C626.
  21. J. Erlebacher, M. J. Aziz, A. Karma and K. Sieradzki: Nature 410 (2001) 450-453.
  22. J. M. Dona and J. Gonzalez-Velasco: J. Phys. Chem. 97 (1993) 4714-4719.
  23. W. Martienssen and H. Warlimont, (Eds.): Springer Handbook of Condensed Matter and Materials Data, (Springer, Berlin, Heidelberg, New York, 2005) p. 139.
  24. W. Martienssen and H. Warlimont, (Eds.): Springer Handbook of Condensed Matter and Materials Data, (Springer, Berlin, Heidelberg, New York, 2005) p. 112.
  25. W. R. Tyson and W. A. Miller: Surf. Sci. 62 (1977) 267-276.
  26. G. Ghosh: Acta Mater. 49 (2001) 2609-2624.
  27. S. M. Makin, A. H. Rowe and A. D. LeClaire: Proc. Phys. Soc. LXX 70 (1957) 545-552.
  28. J. Wang, H. S. Liu, L. B. Liu and Z. P. Jin: CALPHAD 32 (2008) 94-100.
  29. C. P. Wang, L. N. Yan, J. J. Han and X. J. Liu: CALPHAD 37 (2012) 57-64.
  30. C. L. Liu, J. M. Cohen, J. R. Adamas and A. F. Voter: Surf. Sci. 253 (1991) 334-344.
  31. X. G. Wang, J. Z. Sun, C. Zhang, T. Y. Kou and Z. H. Zhang: J. Phys. Chem. C 116 (2012) 13271-13280.
  32. J. Snyder, P. Asanithi, A. B. Dalton and J. Erlebacher: Adv. Mater. 20 (2008) 4883-4886.


[JIM HOME] [JOURNAL ARCHIVES]

© 2014 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp